Background: The accurate assessment of patients with disorders of consciousness (DOC) is a challenge to most experienced clinicians. As a potential clinical tool, functional magnetic resonance imaging (fMRI) could detect residual awareness without the need for the patients' actual motor responses.

Methods: We adopted a simple active fMRI motor paradigm (hand raising) to detect residual awareness in these patients. Twenty-nine patients were recruited. They met the diagnosis of minimally conscious state (MCS) (male = 6, female = 2; = 8), vegetative state/unresponsive wakefulness syndrome (VS/UWS) (male = 17, female = 4; = 21).

Results: We analyzed the command-following responses for robust evidence of statistically reliable markers of motor execution, similar to those found in 15 healthy controls. Of the 29 patients, four (two MCS, two VS/UWS) could adjust their brain activity to the "hand-raising" command, and they showed activation in motor-related regions (which could not be discovered in the own-name task).

Conclusion: Longitudinal behavioral assessments showed that, of these four patients, two in a VS/UWS recovered to MCS and one from MCS recovered to MCS+ (i.e., showed command following). In patients with no response to hand raising task, six VS/UWS and three MCS ones showed recovery in follow-up procedure. The simple active fMRI "hand-raising" task can elicit brain activation in patients with DOC, similar to those observed in healthy volunteers. Activity of the motor-related network may be taken as an indicator of high-level cognition that cannot be discerned through conventional behavioral assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753948PMC
http://dx.doi.org/10.3389/fnins.2019.00976DOI Listing

Publication Analysis

Top Keywords

brain activity
8
patients
8
command patients
8
patients disorders
8
disorders consciousness
8
detect residual
8
residual awareness
8
simple active
8
active fmri
8
hand raising
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!