Background: Long noncoding RNAs (lncRNAs) are recognized as key effectors in tumor, including glioma. LINC01494 is an uncharacterized novel lncRNA. In this research, we aimed to investigate the function of LINC01494 in glioma.

Methods: Gene relative expression was analyzed by qRT-PCR method. CCK8, colony formation and Transwell assay was used to determine cell proliferation, migration and invasion. Bioinformatics analyses were used to predict the target of LINC01494 and miR-122-5p. Luciferase reporter assay was utilized to validate the interactions between LINC01494 and miR-122-5p or CCNG1 and miR-122-5p.

Results: LINC01494 was identified as a significantly upregulated lncRNA in glioma through bioinformatics analysis. Furthermore, LINC01494 upregulation indicated poor prognosis. Meanwhile, in vitro investigation indicated that silencing LINC01494 with siRNAs obviously inhibited the proliferation, cell cycle, migration and invasion of glioma cells. Besides, it is found that LINC01494 expression was negatively correlated with miR-122-5p. We demonstrated that LINC01494 inhibited miR-122-5p to upregulate CCNG1 expression through direct interaction. Rescue assay further demonstrated that LINC01494/miR-122-5p/CCNG1 signaling cascade plays a critical role in regulating glioma cell proliferation, migration and invasion.

Conclusion: Taken together, our findings demonstrated the essential function and molecular mechanism of LINC01494 in glioma progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756415PMC
http://dx.doi.org/10.2147/OTT.S213345DOI Listing

Publication Analysis

Top Keywords

proliferation migration
12
migration invasion
12
linc01494
10
invasion glioma
8
cell proliferation
8
linc01494 mir-122-5p
8
glioma
6
lncrna linc01494
4
linc01494 promotes
4
proliferation
4

Similar Publications

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Objectives: LOXL2, known as Lysyl oxidase-like 2, is classified as a lysyl oxidase (LOX) family member. However, its role and mechanism in endometrial cancer (EC) are unknown. Therefore, we aimed to investigate the potential role and mechanism of LOXL2 in EC.

View Article and Find Full Text PDF

Background: Neoadjuvant, endocrine, and targeted therapies have significantly improved the prognosis of breast cancer (BC). However, due to the high heterogeneity of cancer, some patients cannot benefit from existing treatments. Increasing evidence suggests that amino acids and their metabolites can alter the tumor malignant behavior through reshaping tumor microenvironment and regulation of immune cell function.

View Article and Find Full Text PDF

Infections impacting the central nervous system (CNS) constitute a substantial predisposing factor for the emergence of epileptic seizures. Given that epilepsy conventionally correlates with hippocampal sclerosis and neuronal degeneration, a potentially innovative avenue for therapeutic intervention involves fostering adult neurogenesis, a process primarily occurring within the subgranular zone of the dentate gyrus (DG) through the differentiation of neural stem cells (NSC). While experimental seizures induced by chemoconvulsants or electrical stimulation transiently enhance neurogenesis, the effects of encephalitis and the resultant virus-induced seizures remain inadequately understood.

View Article and Find Full Text PDF

P21-activated kinase 2 (PAK2) is a serine/threonine kinase essential for a variety of cellular processes including signal transduction, cellular survival, proliferation, and migration. A recent report proposed monoallelic PAK2 variants cause Knobloch syndrome type 2 (KNO2)-a developmental disorder primarily characterized by ocular anomalies. Here, we identified a novel de novo heterozygous missense variant in PAK2, NM_002577.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!