Spheroids-three-dimensional aggregates of cells grown from a cancer cell line-represent a model of living tissue for chemotherapy investigation. Distribution of chemotherapeutics in spheroid sections was determined using the matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). Proliferating or apoptotic cells were immunohistochemically labeled and visualized by laser scanning confocal fluorescence microscopy (LSCM). Drug efficacy was evaluated by comparing coregistered MALDI MSI and LSCM data of drug-treated spheroids with LSCM only data of untreated control spheroids. We developed a fiducial-based workflow for coregistration of low-resolution MALDI MS with high-resolution LSCM images. To allow comparison of drug and cell distribution between the drug-treated and untreated spheroids of different shapes or diameters, we introduced a common diffusion-related coordinate, the distance from the spheroid boundary. In a procedure referred to as "peeling", we correlated average drug distribution at a certain distance with the average reduction in the affected cells between the untreated and the treated spheroids. This novel approach makes it possible to differentiate between peripheral cells that died due to therapy and the innermost cells which died naturally. Two novel algorithms-for MALDI MS image denoising and for weighting of MALDI MSI and LSCM data by the presence of cell nuclei-are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927619014983DOI Listing

Publication Analysis

Top Keywords

maldi msi
12
lscm data
12
drug efficacy
8
mass spectrometry
8
fluorescence microscopy
8
msi lscm
8
cells died
8
spheroids
5
cells
5
maldi
5

Similar Publications

To clarify the cause of graded distribution of sucrose in apple fruit flesh, a quarter cut of young apple fruit was cultured for 72 h on agar-solidified MS medium supplemented with 0.5 M [1-C]sorbitol, with the longitudinal or horizontal cut face being attached with the medium, and distribution of C-labelled sucrose in a specimen obtained by slicing the fruit along with the cut face was visualized utilizing MALDI-TOF MSI. Heat map images on the distribution of the peaks of sorbitol containing C-atom indicated that external [1-C]sorbitol had penetrated evenly into the tissue.

View Article and Find Full Text PDF

Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques.

View Article and Find Full Text PDF

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) progressing to metabolic dysfunction-associated steatohepatitis (MASH), characterized by hepatic inflammation, has significantly increased in recent years due to unhealthy dietary practices and sedentary lifestyles. Cathepsin D (CTSD), a lysosomal protease involved in lipid homeostasis, is linked to abnormal lipid metabolism and inflammation in MASH. Although primarily intracellular, CTSD can be secreted extracellularly.

View Article and Find Full Text PDF

Direct Additive Detection in Polymer Films via Platinum-Assisted SALDI Mass Spectrometry Imaging.

Mass Spectrom (Tokyo)

December 2024

Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

In this study, we employed platinum-assisted surface-assisted laser desorption/ionization mass spectrometry imaging (MSI) (Pt-SALDI-MSI) to detect and visualize the spatial distribution of antioxidant additives and organic dyes in polystyrene films undergoing photodegradation. In traditional matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), matrix-derived ion peaks often obscure signals from low-molecular-weight analytes. Pt-SALDI-MSI, which utilizes inorganic nanoparticles instead of an organic matrix, enables the interference-free analysis of low-molecular-weight compounds, thereby addressing the limitation of traditional MALDI-MS.

View Article and Find Full Text PDF

Spatial metabolomics reveal metabolic alternations in the injured mice kidneys induced by triclocarban treatment.

J Pharm Anal

November 2024

Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.

Triclocarban (TCC) is a common antimicrobial agent that has been widely used in medical care. Given the close association between TCC treatment and metabolic disorders, we assessed whether long-term treatment to TCC at a human-relevant concentration could induce nephrotoxicity by disrupting the metabolic levels in a mouse model. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was applied to investigate the alterations in the spatial distributions and abundances of TCC, endogenous and exogenous metabolites in the kidney after TCC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!