Background: Chronic kidney disease (CKD) is a progressive condition that leads to irreversible damage to the kidneys and is associated with an increased incidence of cardiovascular events and mortality. As novel interventions become available, estimates of economic and clinical outcomes are needed to guide payer reimbursement decisions.
Objective: The aim of the present study was to systematically review published economic models that simulated long-term outcomes of kidney disease to inform cost-effectiveness evaluations of CKD treatments.
Methods: The review was conducted across four databases (MEDLINE, Embase, the Cochrane library and EconLit) and health technology assessment agency websites. Relevant information on each model was extracted. Transition and mortality rates were also extracted to assess the choice of model parameterisation on disease progression by simulating patient's time with end-stage renal disease (ESRD) and time to ESRD/death. The incorporation of cardiovascular disease in a population with CKD was qualitatively assessed across identified models.
Results: The search identified 101 models that met the criteria for inclusion. Models were classified into CKD models (n = 13), diabetes models with nephropathy (n = 48), ESRD-only models (n = 33) and cardiovascular models with CKD components (n = 7). Typically, published models utilised frameworks based on either (estimated or measured) glomerular filtration rate (GFR) or albuminuria, in line with clinical guideline recommendations for the diagnosis and monitoring of CKD. Generally, two core structures were identified, either a microsimulation model involving albuminuria or a Markov model utilising CKD stages and a linear GFR decline (although further variations on these model structures were also identified). Analysis of parameter variability in CKD disease progression suggested that mean time to ESRD/death was relatively consistent across model types (CKD models 28.2 years; diabetes models with nephropathy 24.6 years). When evaluating time with ESRD, CKD models predicted extended ESRD survival over diabetes models with nephropathy (mean time with ESRD 8.0 vs. 3.8 years).
Discussion: This review provides an overview of how CKD is typically modelled. While common frameworks were identified, model structure varied, and no single model type was used for the modelling of patients with CKD. In addition, many of the current methods did not explicitly consider patient heterogeneity or underlying disease aetiology, except for diabetes. However, the variability of individual patients' GFR and albuminuria trajectories perhaps provides rationale for a model structure designed around the prediction of individual patients' GFR trajectories. Frameworks of future CKD models should be informed and justified based on clinical rationale and availability of data to ensure validity of model results. In addition, further clinical and observational research is warranted to provide a better understanding of prognostic factors and data sources to improve economic modelling accuracy in CKD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892339 | PMC |
http://dx.doi.org/10.1007/s40273-019-00835-z | DOI Listing |
PLoS One
January 2025
Cardiovascular Outcomes Research Laboratories (CORELAB), University of California, Los Angeles, Los Angeles, CA, United States of America.
Purpose: Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have been noted to face increased cancer incidence. Yet, the impact of concomitant renal dysfunction on acute outcomes following elective surgery for cancer remains to be elucidated.
Methods: All adult hospitalizations entailing elective resection for lung, esophageal, gastric, pancreatic, hepatic, or colon cancer were identified in the 2016-2020 National Inpatient Sample.
J Clin Hypertens (Greenwich)
January 2025
Division of Nephrology, Department of Geriatrics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, P. R. China.
This study aimed to assess the correlation between estimated pulse wave velocity (ePWV) and mortality rates related to all-cause and cardiovascular disease (CVD) among individuals diagnosed with chronic kidney disease (CKD) in the United States. A total of 4669 participants with CKD were identified from the National Health and Nutrition Examination Survey conducted between 1999 and 2018. We calculated the incidence of CKD using an estimated glomerular filtration rate (eGFR) of < 60 mL/min/1.
View Article and Find Full Text PDFToxics
January 2025
Department of Environmental and Occupational Health, Guangxi Medical University, Nanning 530021, China.
Background: While current epidemiological studies have documented associations between environmental metals and renal dysfunction, the majority have concentrated on plasma metal levels. The relationship between urinary metal exposure and chronic kidney disease (CKD) remains contentious, particularly within specific demographic groups.
Methods: This cross-sectional study included 2919 rural Chinese adults recruited between 2018 and 2019.
Metabolites
January 2025
Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy.
Chronic kidney disease (CKD) is a prevalent global health concern affecting approximately 850 million people worldwide, with a significant and rising mortality rate. CKD often coexists with hyperuricemia (HSUA), which is also increasingly common due to its association with hypertension, obesity, and diabetes. The interplay between hyperuricemia and CKD is complex; while in vitro studies and animal models support a role for uric acid mediating glomerular and tubule-interstitial damage, and HSUA has been shown to predict the onset and progression of CKD, the expectations of renal protection by the use of urate lowering treatment (ULT) are inconsistent.
View Article and Find Full Text PDFThe ultimate goal of precision medicine is to tailor treatment to specific disease processes, thereby optimising patient outcomes. This approach moves beyond the one-size-fits-all model, recognising at an individual level the unique combinations of molecular, genetic, and environmental factors determining disease progression and treatment response. Chronic kidney disease (CKD) exemplifies the need for precision medicine, given its complex and heterogeneous nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!