Roboticists have long drawn inspiration from nature to develop navigation and simultaneous localization and mapping (SLAM) systems such as RatSLAM. Animals such as birds and bats possess superlative navigation capabilities, robustly navigating over large, three-dimensional environments, leveraging an internal neural representation of space combined with external sensory cues and self-motion cues. This paper presents a novel neuro-inspired 4DoF (degrees of freedom) SLAM system named NeuroSLAM, based upon computational models of 3D grid cells and multilayered head direction cells, integrated with a vision system that provides external visual cues and self-motion cues. NeuroSLAM's neural network activity drives the creation of a multilayered graphical experience map in a real time, enabling relocalization and loop closure through sequences of familiar local visual cues. A multilayered experience map relaxation algorithm is used to correct cumulative errors in path integration after loop closure. Using both synthetic and real-world datasets comprising complex, multilayered indoor and outdoor environments, we demonstrate NeuroSLAM consistently producing topologically correct three-dimensional maps.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00422-019-00806-9DOI Listing

Publication Analysis

Top Keywords

slam system
8
cues self-motion
8
self-motion cues
8
visual cues
8
experience map
8
loop closure
8
cues
5
neuroslam brain-inspired
4
brain-inspired slam
4
system environments
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!