MAG (Myelin-associated glycoprotein) is a type I transmembrane glycoprotein expressed by Schwann cells and oligodendrocytes, that has been implicated in the control of axonal growth in many neuronal populations including cerebellar granule neurons (CGNs). However, it is unclear whether MAG has other functions in central nervous system, in particular, in cerebellar development and patterning. We find that MAG expression in the cerebellum is compartmentalised resulting in increased MAG protein levels in the cerebellar white matter. MAG induces apoptosis in developing CGNs through p75 signalling. Deletion of p75 in vivo reduced the number of apoptotic neurons in cerebellar white matter during development leading to reduction in the size of white matter in the adulthood. Furthermore, we show that MAG impairs CGNs neurite outgrowth as consequence of MAG-induced apoptosis in CGNs. Mechanistically, we find that MAG/NgR1-induced cell death is dependent of p75-mediated activation of JNK/cell death signalling pathway. Together, these findings identify the mechanisms by which MAG induces CGNs apoptotic activity, a crucial event that facilitates cerebellar layer refinement during development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768859PMC
http://dx.doi.org/10.1038/s41419-019-1970-xDOI Listing

Publication Analysis

Top Keywords

mag induces
12
white matter
12
mag
8
induces apoptosis
8
cerebellar granule
8
granule neurons
8
cerebellar white
8
cerebellar
6
cgns
5
apoptosis cerebellar
4

Similar Publications

Impact Resistance of Layered Aramid Fabric: A Numerical Study on Projectile-Induced Damage.

Polymers (Basel)

December 2024

Faculty of Entrepreneurship, Engineering and Business Management, National University of Science and Technology Politehnica, 060042 Bucharest, Romania.

The aim of this work is to comparatively analyze, using numerical simulation, the impact behavior of aramid fabric. A layered panel was impacted by two projectiles specific to the NIJ protection level HG1. The protection level in this study is based on NIJ Standard 0123.

View Article and Find Full Text PDF

Multi-Functional Bio-HJzyme Engineered Polyetheretherketone Implant with Cascade-Amplification Therapeutic Capabilities Toward Intractable Implant-Associated Infections.

Small

December 2024

State Key Laboratory of Oral Diseases, School of Chemical Engineering, National Center for Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.

Intractable implant-associated infections (IAIs) are the primary cause of prosthetic implant failure, particularly in the context of diabetes mellitus. There is an urgent need to design and construct versatile engineered implants integrated with cascade amplification therapeutic modality to significantly improve the treatment of diabetic IAIs. To address this issue, a multi-functional MXene/AgPO@glucose oxidase bio-heterojunction enzyme (M/A@GOx bio-HJzyme) coating is developed, which is decorated with an inert sulfonated polyetheretherketone implant (SP-M/A@G) via hydrothermal treatment and layered deposition.

View Article and Find Full Text PDF

Effect of osmotic pressure on membrane permeation through antimicrobial peptide-induced pores.

Biochem Biophys Res Commun

January 2025

Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan; Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, 422-8529, Japan; Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan. Electronic address:

Most antimicrobial peptides (AMPs) induce membrane damage such as pore formation in bacterial cells, resulting in rapid cell death. On the other hand, bacterial cells have a large intracellular turgor pressure, i.e.

View Article and Find Full Text PDF

Butyrate has been proposed as a drug therapy by acting as a lysine deacetylase (KDAC) inhibitor and elevating protein acetylation, in particular on histones. Nonetheless, recent studies suggest that tissues such as the gut can utilize butyrate as a metabolite. We have previously shown that the addition of butyrate induces a rapid increase of oxygen consumption in whole Drosophila melanogaster heads.

View Article and Find Full Text PDF

Oligodendrocyte Progenitor Cell Transplantation Reduces White Matter Injury in a Fetal Goat Model.

CNS Neurosci Ther

December 2024

Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China.

Background: Preterm white matter injury (PWMI) is the most common type of brain injury in preterm infants, in which, oligodendrocyte progenitor cells (OPCs) are predominantly damaged. In this study, human OPCs (hOPCs) were administered to a fetal goat model of PWMI to examine the differentiation potential and therapeutic effects of the cells on PWMI.

Methods: Preterm goat fetuses were subjected to hypoxic-ischemia (HI) via intermittent umbilical cord occlusion (5 min × 5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!