Human induced pluripotent stem cells (hiPSCs) are reprogrammed from somatic cells and are regarded as promising sources for regenerative medicine and disease research. Recently, techniques for analyses of individual cells, such as single-cell RNA-Seq and mass cytometry, have been used to understand the stem cell reprogramming process in the mouse. However, the reprogramming process in hiPSCs remains poorly understood. Here we used mass cytometry to analyze the expression of pluripotency and cell cycle markers in the reprogramming of human stem cells. We confirmed that, during reprogramming, the main cell population was shifted to an intermediate population consisting of neither fibroblasts nor hiPSCs. Detailed population analyses using computational approaches, including dimensional reduction by spanning-tree progression analysis of density-normalized events, PhenoGraph, and diffusion mapping, revealed several distinct cell clusters representing the cells along the reprogramming route. Interestingly, correlation analysis of various markers in hiPSCs revealed that the pluripotency marker TRA-1-60 behaves in a pattern that is different from other pluripotency markers. Furthermore, we found that the expression pattern of another pluripotency marker, octamer-binding protein 4 (OCT4), was distinctive in the pHistone-H3 population (M phase) of the cell cycle. To the best of our knowledge, this is the first mass cytometry-based investigation of human reprogramming and pluripotency. Our analysis elucidates several aspects of hiPSC reprogramming, including several intermediate cell clusters active during the process of reprogramming and distinctive marker expression patterns in hiPSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901311 | PMC |
http://dx.doi.org/10.1074/jbc.RA119.009061 | DOI Listing |
J Med Chem
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
To date, the abuse of antibiotics and a gradual decline in novel antibiotic discovery enlarge the threat of drug-resistant bacterial infections, especially methicillin-resistant (MRSA). Herein, inspired by the unique structures and antibacterial activities of 2-quinolones, a class of novel 2-quinolones with substituted pyridines was synthesized. Notably, compound , the derivative with a methylpyridine fragment, showed potent antibacterial and antibiofilm activities, especially for MRSA strains (MIC = 0.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom.
Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.
View Article and Find Full Text PDFNano Converg
January 2025
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
Intensive Care Med
January 2025
Center for Disease Mechanisms Research, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!