Spores are required for long-term survival of many organisms, including most fungi. For the majority of fatal human fungal pathogens, spore germination is the key process required to initiate vegetative growth and ultimately cause disease. Because germination is required for pathogenesis, the process could hold fungal-specific targets for new antifungal drug development. Compounds that inhibit germination could be developed into high efficacy, low-toxicity drugs for use in the prevention and/or treatment of fungal spore-mediated diseases. To identify drugs with the ability to inhibit pathogenic fungal spore germination, we developed a novel luciferase-based germination assay, using spores of the meningitis-causing yeast We screened the L1300 Selleck Library of FDA-approved drugs and identified 27 that inhibit germination. Of these, 22 inhibited both germination and yeast growth, and 21 have not been previously indicated for use in the treatment of fungal diseases. We quantitated the inhibition phenotypes of 10 specific germination/growth inhibitors in detail and tested one drug, the antiparasitic compound pentamidine, in our mouse intranasal model of cryptococcal infection. We discovered that pentamidine was effective at reducing lung fungal burdens when used in either prophylaxis (before infection) or treatment (after establishing an infection). Due to its efficacy and low intranasal toxicity, pentamidine is a lead candidate for repurposing for broader use as an antigerminant to prevent spore-mediated disease in immunocompromised patients. Not only does pentamidine provide an opportunity for prophylaxis against fungal spores, but it also provides proof of concept for targeting pathogenic spore germination for antifungal drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6879269 | PMC |
http://dx.doi.org/10.1128/AAC.00994-19 | DOI Listing |
Plants (Basel)
December 2024
Department of Biology, University of Naples, 80126 Naples, Italy.
species are used as herbal medicine and in the preparation of decoctions in several Asian and African regions. Among them, the plant is known for its medicinal properties, but comprehensive studies on its biological activity are still limited. This study examined the properties of the essential oil (EO) extracted by and collected in Morocco during the flowering period.
View Article and Find Full Text PDFPlant Dis
January 2025
Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;
During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.
View Article and Find Full Text PDFJ Bacteriol
January 2025
College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.
Plants (Basel)
December 2024
Department of Life Science, Health, and Health Professions, University of Rome "Link Campus", 00165 Rome, Italy.
Mandarin, one of the winter fruits commonly used in the preparation of foods and juices, is a fruit native to China and Southeast Asia. In this work, essential oils (EOs) obtained from by-products of the Blanco flavedo of five cultivars present and cultivated within the Botanical Garden of Palermo were chemically and biologically studied: 'Avana' (), 'Tardivo di Ciaculli' (), 'Bombajensis' (), 'Aurantifolia' (), and 'Padre Bernardino' (). The GC and GC-MS analysis performed on all the extracted samples clearly highlighted the notable presence of limonene, a characteristic hydrocarbon monoterpene of EOs of the genus.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Plant Protection Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
Wheat stripe rust, caused by a biotrophic, obligate fungus f. sp. (), is a destructive wheat fungal disease that exists worldwide and caused huge yield reductions during pandemic years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!