Highly efficient enrichment method for human plasma glycoproteome analyses using tandem hydrophilic interaction liquid chromatography workflow.

J Chromatogr A

Medical and Healthy Analysis Center, Beijing Key Laboratory of Tumor Systems Biology, Peking University, Xueyuan Road 38, Haidian District, Beijing 100191, PR China. Electronic address:

Published: January 2020

Selective enrichment of glycopeptides from complex sample with hydrophilic interaction liquid chromatography (HILIC) method, followed by cleavage of N-glycans by PNGase F to expose an easily detectable mark on the former glycosylation sites is used extensively as a sample preparation for comprehensive glycoproteome analysis. However, the coenrichment of hydrophilic nonglycosylated peptides and the released N-glycans seriously affect the identification of deglycopeptides with nano-LC-MS/MS. Here, we developed a new method for highly efficient and specific enrichment of human plasma N-glycopeptides using HILIC-PNGaseF-HILIC workflow (HPH). The first HILIC enriches the N-glycopeptides from the complex peptide mixtures. After the enriched N-glycopeptides are deglycosylated with PNGase F, the second HILIC captures the coenrichment of hydrophilic nonglycosylated peptides and the N-glycans, and then further enriches the deglycosylated peptides. The glycopeptide enrichment efficiency can be notably improved by employing HPH, evaluated by the highly recovery (more than 93.6%) and specific capturing glycopeptides from tryptic digest of IgG and BSA up to the molar ratios of 1:200. Meanwhile, we found that the alkylated proteins with IAA can affect the enrichment efficiency for N-glycopeptides with HILIC method. Moreover, after optimism the protein digestion, this novel HPH strategy allowed for the identified 722 N-glycopeptides within 202 unique glycoproteins from 1 µL human plasma digest using PNGase F in HO. Meanwhile, this new HPH strategy identified an average 501 N-glycopeptides within averagely 134 unique glycoproteins from 1 µL human plasma digest using PNGase F in HO. The enhanced glycopeptide detection was promoted by a substantial depletion of nonglycosylated peptides in the second HILIC. It was found that 52.2% more N-glycosylation peptides were identified by the HPH strategy compared with the using one HILIC enrichment alone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.460546DOI Listing

Publication Analysis

Top Keywords

human plasma
16
nonglycosylated peptides
12
hph strategy
12
highly efficient
8
hydrophilic interaction
8
interaction liquid
8
liquid chromatography
8
hilic method
8
coenrichment hydrophilic
8
hydrophilic nonglycosylated
8

Similar Publications

Coronavirus disease 2019 (COVID-19), an extremely contagious illness, has posed enormous challenges to healthcare systems around the world. Although the evidence on COVID-19 management is growing, antiviral medication is still the first line of treatment. Therefore, it is critical that effective, safe, and tolerable antivirals be available to treat early COVID-19 and stop its progression.

View Article and Find Full Text PDF

Background: A novel anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugate (ADC) GQ1001 was assessed in patients with previously treated HER2 positive advanced solid tumors in a global multi-center phase Ia dose escalation trial.

Methods: In this phase Ia trial, a modified 3 + 3 study design was adopted during dose escalation phase. Eligible patients were enrolled, and GQ1001 monotherapy was administered intravenously every 3 weeks.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Meta-Analysis of the Input and Disposition of Various Dosage Forms of Methylprednisolone in Healthy Subjects Utilizing a Physiologically Based Pharmacokinetic Model.

AAPS J

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 160 Hayes Rd, Buffalo, New York, 14214, USA.

The study quantitatively analyzes and compares the pharmacokinetics (PK) of methylprednisolone (MPL) in humans upon administration of various dosage forms. The PK parameters and profiles of MPL in healthy subjects were collected from 22 literature sources. A minimal physiologically based pharmacokinetic (mPBPK) model consisting of blood and two tissue (lumped liver and kidney, remainder) compartments with nonlinear tissue partitioning was applied to describe MPL disposition.

View Article and Find Full Text PDF

A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!