Objective: Survivors of Ebola virus disease (EVD) are at risk of developing blinding intraocular inflammation-or uveitis-which is associated with retinal pigment epithelial (RPE) scarring and persistence of live Zaire ebolavirus (EBOV) within the eye. As part of a large research project aimed at defining the human RPE cell response to being infected with EBOV, this work focused on the microRNAs (miRNAs) associated with the infection.
Results: Using RNA-sequencing, we detected 13 highly induced and 2 highly repressed human miRNAs in human ARPE-19 RPE cells infected with EBOV, including hsa-miR-1307-5p, hsa-miR-29b-3p and hsa-miR-33a-5p (up-regulated), and hsa-miR-3074-3p and hsa-miR-27b-5p (down-regulated). EBOV-miR-1-5p was also found in infected RPE cells. Through computational identification of putative miRNA targets, we predicted a broad range of regulatory activities, including effects on innate and adaptive immune responses, cellular metabolism, cell cycle progression, apoptosis and autophagy. The most highly-connected molecule in the miR-target network was leucine-rich repeat kinase 2, which is involved in neuroinflammation and lysosomal processing. Our findings should stimulate new studies on the impact of miRNA changes in EBOV-infected RPE cells to further understanding of intraocular viral persistence and the pathogenesis of uveitis in EVD survivors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6771106 | PMC |
http://dx.doi.org/10.1186/s13104-019-4671-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!