A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A data-driven approach to predicting the attachment density of biofouling organisms. | LitMetric

The attachment efficiency of biofouling organisms on solid surfaces depends on a variety of factors, including fouler species, nutrition abundance, flow rate, surface morphology and the stiffness of the solid to which attachment is to be made. So far, extensive research has been carried out to investigate the effects of these factors on the attachment of various fouling species. However, the results obtained are species-dependent and scattered. There is no universal rule that can be applied to predict the attachment efficiency of different species. To solve this problem, the authors carried out meta-analysis of the effects of ten selected factors on attachment efficiency, resulting in a universal correlation between the attachment density and the selected factors, which was validated by attachment tests of tubeworms on PDMS surfaces. The results provide a practical approach to predicting the attachment efficiency of fouling organisms and should be of great value in the design of anti-biofouling materials.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2019.1667982DOI Listing

Publication Analysis

Top Keywords

attachment efficiency
16
attachment
9
approach predicting
8
predicting attachment
8
attachment density
8
biofouling organisms
8
factors attachment
8
selected factors
8
data-driven approach
4
density biofouling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!