Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects worldwide, yet the most effective strategies for preventing virus transmission during pregnancy are unknown. We measured the efficacy of human monoclonal antibodies (mAbs) to HCMV attachment/entry factors glycoprotein B (gB) and the pentameric complex, gH/gL-pUL128-131, in preventing infection and spread of a clinical strain in primary placental cells and explants of developing anchoring villi. A total of 109 explants from five first-trimester placentas were cultured, and infection was analyzed in over 400 cell columns containing ~120,000 cytotrophoblasts (CTBs). mAbs to gB and gH/gL, 3-25 and 3-16, respectively, neutralized infection in stromal fibroblasts and trophoblast progenitor cells. mAbs to pUL128-131 of the pentameric complex, 1-103 and 2-18, neutralized infection of amniotic epithelial cells better than mAbs 3-25 and 3-16 and hyperimmune globulin. Select mAbs neutralized infection of cell column CTBs, with mAb 2-18 most effective, followed by mAb 3-25. Treatment of anchoring villi with mAbs postinfection reduced spread in CTBs and impaired formation of virion assembly compartments, with mAb 2-18 achieving better suppression at lower concentrations. These results predict that antibodies generated by HCMV vaccines or used for passive immunization have the potential to reduce transplacental transmission and congenital disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963214PMC
http://dx.doi.org/10.3390/vaccines7040135DOI Listing

Publication Analysis

Top Keywords

neutralized infection
12
monoclonal antibodies
8
human cytomegalovirus
8
infection spread
8
pentameric complex
8
anchoring villi
8
3-25 3-16
8
mab 2-18
8
infection
7
mabs
6

Similar Publications

The Antibody Mediated Prevention (AMP) trials showed that passively infused VRC01, a broadly neutralizing antibody (bNAb) targeting the CD4 binding site (CD4bs) on the HIV-1 envelope protein (Env), protected against neutralization-sensitive viruses. We identified six individuals from the VRC01 treatment arm with multi-lineage breakthrough HIV-1 infections from HVTN703, where one variant was sensitive to VRC01 (IC < 25 ug/mL) but another was resistant. By comparing Env sequences of resistant and sensitive clones from each participant, we identified sites predicted to affect VRC01 neutralization and assessed the effect of their reversion in the VRC01-resistant clone on neutralization sensitivity.

View Article and Find Full Text PDF

A total of 5011 adult volunteers attending vaccination centers in different regions of Colombia were enrolled in a 1-year prospective observational cohort study to evaluate the immunogenicity and effectiveness of SARS-CoV-2-based vaccines as part of a National Vaccine Program established to contain the COVID-19 pandemic. Following informed consent, 5,011 participants underwent a sociodemographic survey and PCR testing to assess SARS-CoV-2 infection. Blood samples were collected, and serum fractions were obtained from a participant subsample (n = 3441) at six-time points to assess virus-specific IgG responses to the Spike protein, its Receptor Binding Domain, and the Nucleoprotein by ELISA.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

Expression, purification and immunogenicity analyses of receptor binding domain protein of severe acute respiratory syndrome coronavirus 2 from delta variant.

Vet Res Forum

December 2024

Institute of Pathogenic Microbiology, College of Biological Science and Engineering, and Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, China.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. The receptor binding domain (RBD), located at the spike protein of SARS-CoV-2, contains most of the neutralizing epitopes during viral infection and is an ideal antigen for vaccine development. In this study, bioinformatic analysis of the amino acid sequence data of SARS-CoV-2 RBD protein for the better understanding of molecular characteristics was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!