We analyze the microscopic mechanism of the improvement of solar cell efficiency by plasmons in metallic components embedded in active optical medium of a cell. We focus on the explanation of the observed new channel of plasmon photovoltaic effect related to the influence of plasmons onto the internal cell electricity beyond the previously known plasmon mediated absorption of photons. The model situation we analyze is the hybrid chemical perovskite solar cell CH 3 NH 3 PbI 3 - α Cl α with inclusion of core-shell Au/Si0 2 nanoparticles filling pores in the Al 2 O 3 or TiO 2 porous bases at the bottom of perovskite layer, application of which improved the cell efficiency from 10.7 to 11.4% and from 8.4 to 9.5%, respectively, as demonstrated experimentally, mostly due to the reduction by plasmons of the exciton binding energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804171 | PMC |
http://dx.doi.org/10.3390/ma12193192 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Peking University, College of Chemistry and Molecular Engineering, Chengfu Road No.292, 100871, Beijing, CHINA.
Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH).
View Article and Find Full Text PDFiScience
January 2025
Department of Physics, University of California, Merced, Merced, CA, USA.
Metal halide perovskite (MHP) solar cells are promising aerospace power sources given their potential as inexpensive, lightweight, and resilient solar electricity generators. Herein, the intrinsic radiation tolerance of unencapsulated methylammonium lead iodide/chloride (CHNHPbICl) films was isolated. Spatially resolved photoluminescence (PL) spectroscopy and confocal microscopy revealed the fundamental defect physics through optical changes as films were irradiated with 4.
View Article and Find Full Text PDFFront Chem
January 2025
Key laboratory of Rubber-Plastic of Ministry of Education /Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.
Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination.
View Article and Find Full Text PDFNat Commun
January 2025
King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Science and Engineering Division (PSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
ChemSusChem
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.
Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!