NADPH is the primary source of cellular reductant for biosynthesis, and strategies for increasing productivity via metabolic engineering need to take account of the requirement for reducing power. In plants, while the oxidative pentose phosphate pathway is the most direct route for NADPH production in heterotrophic tissues, there is increasing evidence that other pathways make significant contributions to redox balance. Deuterium-based isotopic labelling strategies have recently been developed to quantify the relative production of NADPH from different pathways in mammalian cells, but the application of these methods to plants has not been critically evaluated. In this study, LC-MS was used to measure deuterium incorporation into metabolites extracted from heterotrophic cell cultures grown on [1-H]glucose or DO. The results show that a high rate of flavin-enzyme-catalysed water exchange obscures labelling of NADPH from deuterated substrates and that this exchange cannot be accurately accounted for due to exchange between triose- and hexose-phosphates. In addition, the duplication of NADPH generating reactions between subcellular compartments can confound analysis based on whole cell extracts. Understanding how the structure of the metabolic network affects the applicability of deuterium labelling methods is a prerequisite for development of more effective flux determination strategies, ensuring data are both quantitative and representative of endogenous biological processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835633PMC
http://dx.doi.org/10.3390/metabo9100205DOI Listing

Publication Analysis

Top Keywords

heterotrophic cell
8
cell cultures
8
nadph
6
limitations deuterium-labelled
4
deuterium-labelled substrates
4
substrates quantifying
4
quantifying nadph
4
nadph metabolism
4
metabolism heterotrophic
4
cultures nadph
4

Similar Publications

High-pressure continuous culturing: life at the extreme.

Appl Environ Microbiol

January 2025

Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.

Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases.

View Article and Find Full Text PDF

Long-lasting and controlled-release borate as a biocide against microbial breeding in a recirculating cooling water system.

Sci Total Environ

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.

Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS.

View Article and Find Full Text PDF

Assembly and Quantification of Co-Cultures Combining Heterotrophic Yeast with Phototrophic Sugar-Secreting Cyanobacteria.

J Vis Exp

December 2024

Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf; Department of Biochemistry and Molecular Biology, Michigan State University.

With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.

View Article and Find Full Text PDF

Microalgae are photosynthetic microorganisms that have a rapid growth cycle and carbon fixation ability. They have diverse cellular structures, ranging from prokaryotic cyanobacteria to more complex eukaryotic forms, which enable them to thrive in a variety of environments and support biomass production. They utilize both photosynthesis and heterotrophic pathways, indicating their ecological importance and potential for biotechnological applications.

View Article and Find Full Text PDF

In the present study, we investigated the dinoflagellate assemblages in the upper water column (< 150-m depth), focusing on the suboxic waters of the eastern Arabian Sea (EAS) along 68°E from 8°N to 21°N during the southwest monsoon 2020 (SWM-2020). Dinoflagellate abundance was higher in the upper water column (0-80-m depth, mean ± SD = 411 ± 903 cells L) compared to deeper waters (80-150-m depth, mean ± SD = 128 ± 216 cells L). Among 11 identified taxonomic dinoflagellate orders, Peridinales were predominant in the upper waters column (71%, mean ± SD = 285 ± 858 cells L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!