Collagen is widely used in the pharmaceutical, tissue engineering, nutraceutical, and cosmetic industries. In this study, acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted from the skin of red stingray, and its physicochemical and functional properties were investigated. The yields of ASC and PSC were 33.95 ± 0.7% and 37.18 ± 0.71% (on a dry weight basis), respectively. ASC and PSC were identified as type I collagen by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis, possessing a complete triple helix structure as determined by UV absorption, Fourier transform infrared, circular dichroism, and X-ray diffraction spectroscopy. Contact angle experiments indicated that PSC was more hydrophobic than ASC. Thermal stability tests revealed that the melting temperature of PSC from red stingray skin was higher than that of PSC from duck skin, and the difference in the melting temperature between these two PSCs was 9.24 °C. Additionally, both ASC and PSC were functionally superior to some other proteins from terrestrial sources, such as scallop gonad protein, whey protein, and goose liver protein. These results suggest that PSC from red stingray skin could be used instead of terrestrial animal collagen in drugs, foods, cosmetics, and biological functional materials, and as scaffolds for bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835876 | PMC |
http://dx.doi.org/10.3390/md17100558 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!