Quantum tunneling in chemistry is often attributed to the processes at low or near room temperatures when the rate of thermal reactions becomes far less than the rate of quantum tunneling. However, in some rapid processes, quantum tunneling can be observed even at high temperatures. Herein, we report the experimental evidence for anomalous H/D kinetic isotope effect (KIE) during sonochemical dissociation of water molecule driven by 20 kHz power ultrasound measured in HO/DO mixtures saturated with Ar or Xe. Hydrogen released during ultrasonic treatment is enriched by light isotope. The observed H/D KIE (α = 2.15-1.50) is much larger than what is calculated assuming a classical KIE for T = 5000 K (α = 1.15) obtained from the sonoluminescence spectra in HO and DO. Furthermore, the α values sharply decrease with increasing of HO content in HO/DO mixtures reaching a steady-state value close to α = 1.50, which also cannot be explained by O-H/O-D zero-point energy difference. We suggest that these results can be understood in terms of quantum electron tunneling occurring in nonequilibrium picosecond plasma produced at the last stage of cavitation bubble collapse. Thermal homolytic splitting of water molecule is inhibited by extremely short lifetime of such plasma. On the contrary, immensely short traversal time for electron tunneling in water allows HO dissociation by quantum tunneling mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2019.104789 | DOI Listing |
Molecules
December 2024
Universite Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR5306, F-69100 Villeurbanne, France.
Epichlorohydrin is used as an intermediate for the synthesis of polymers and, more particularly, epoxy adhesives. The traditional process involves the cleavage of the carbon-chlorine bond in an alkaline solution. Here, we investigate the breakage of this bond induced by low-energy (<10 eV) electrons.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
Since the 1980s, pressure-sensitive paint (PSP) has been used as an optical pressure sensor for measuring surface pressure on aircraft models in wind tunnels. Typically, PSPs have utilized platinum(II)-5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin due to its high pressure sensitivity, phosphorescence lifetime of ∼50 μs, reasonable quantum yield of emission, and resistance to photo-oxidation. This work investigates the photophysics and electronic structure of metal complexes of 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin, namely, Zn(II), Pd(II), and Ir(III), as potentially improved luminophores for polymer-based PSPs.
View Article and Find Full Text PDFACS Nano
January 2025
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.
Phys Rev Lett
December 2024
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
Phys Rev Lett
December 2024
School of Physics, Beihang University, Haidian District, Beijing 100191, China.
Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!