Adult neurogenesis in the mammalian dentate gyrus.

Anat Histol Embryol

College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.

Published: January 2020

Earlier observations in neuroscience suggested that no new neurons form in the mature central nervous system. Evidence now indicates that new neurons do form in the adult mammalian brain. Two regions of the mature mammalian brain generate new neurons: (a) the border of the lateral ventricles of the brain (subventricular zone) and (b) the subgranular zone (SGZ) of the dentate gyrus of the hippocampus. This review focuses only on new neuron formation in the dentate gyrus of the hippocampus. During normal prenatal and early postnatal development, neural stem cells (NSCs) give rise to differentiated neurons. NSCs persist in the dentate gyrus SGZ, undergoing cell division, with some daughter cells differentiating into functional neurons that participate in learning and memory and general cognition through integration into pre-existing neural networks. Axons, which emanate from neurons in the entorhinal cortex, synapse with dendrites of the granule cells (small neurons) of the dentate gyrus. Axons from granule cells synapse with pyramidal cells in the hippocampal CA3 region, which send axons to synapse with CA1 hippocampal pyramidal cells that send their axons out of the hippocampus proper. Adult neurogenesis includes proliferation, differentiation, migration, the death of some newly formed cells and final integration of surviving cells into neural networks. We summarise these processes in adult mammalian hippocampal neurogenesis and discuss the roles of major signalling molecules that influence neurogenesis, including neurotransmitters and some hormones. The recent controversy raised concerning whether or not adult neurogenesis occurs in humans also is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ahe.12496DOI Listing

Publication Analysis

Top Keywords

dentate gyrus
20
adult neurogenesis
12
neurons form
8
adult mammalian
8
mammalian brain
8
gyrus hippocampus
8
cells
8
neural networks
8
granule cells
8
pyramidal cells
8

Similar Publications

How does chronic pain lead to memory loss?

Elife

January 2025

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

A dysfunctional signaling pathway in the hippocampus has been linked to chronic pain-related memory impairment in mice.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.

Microorganisms

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!