A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of Gram negative non-fermentative bacteria: How hard can it be? | LitMetric

Introduction: The prevalence of bacteremia caused by Gram negative non-fermentative (GNNF) bacteria has been increasing globally over the past decade. Many studies have investigated their epidemiology but focus on the common GNNF including Pseudomonas aeruginosa and Acinetobacter baumannii. Knowledge of the uncommon GNNF bacteremias is very limited. This study explores invasive bloodstream infection GNNF isolates that were initially unidentified after testing with standard microbiological techniques. All isolations were made during laboratory-based surveillance activities in two rural provinces of Thailand between 2006 and 2014.

Methods: A subset of GNNF clinical isolates (204/947), not identified by standard manual biochemical methodologies were run on the BD Phoenix automated identification and susceptibility testing system. If an organism was not identified (12/204) DNA was extracted for whole genome sequencing (WGS) on a MiSeq platform and data analysis performed using 3 web-based platforms: Taxonomer, CGE KmerFinder and One Codex.

Results: The BD Phoenix automated identification system recognized 92% (187/204) of the GNNF isolates, and because of their taxonomic complexity and high phenotypic similarity 37% (69/187) were only identified to the genus level. Five isolates grew too slowly for identification. Antimicrobial sensitivity (AST) data was not obtained for 93/187 (50%) identified isolates either because of their slow growth or their taxa were not in the AST database associated with the instrument. WGS identified the 12 remaining unknowns, four to genus level only.

Conclusion: The GNNF bacteria are of increasing concern in the clinical setting, and our inability to identify these organisms and determine their AST profiles will impede treatment. Databases for automated identification systems and sequencing annotation need to be improved so that opportunistic organisms are better covered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6786646PMC
http://dx.doi.org/10.1371/journal.pntd.0007729DOI Listing

Publication Analysis

Top Keywords

automated identification
12
gram negative
8
negative non-fermentative
8
gnnf bacteria
8
bacteria increasing
8
gnnf isolates
8
phoenix automated
8
genus level
8
gnnf
7
identification
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!