This Letter highlights a cost-effective, simple, and rapid one-step process leading to the (SrLu) F glass ceramic in a completely new perfluoride system. The mechanism was demonstrated clearly. This material shows high transparency in the UV (0.35 μm) range up to far-IR (10.8 μm). In addition, low phonon energy, as well as good mechanical properties, chemical durability, spectral performance, and long lifetime (7.2 ms) of Er:2.7  μm are also possessed by this material. This Letter effectively breaks through the performance limitation of a glass matrix on fluoride crystallites in glass ceramics for the first time, to the best of our knowledge. Meanwhile, it also provides a promising optical material for windows and lasers by a simple and cheap method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.44.004857DOI Listing

Publication Analysis

Top Keywords

glass ceramic
8
perfluoride glass
4
ceramic transmitting
4
transmitting far-ir
4
far-ir tailored
4
tailored step
4
step letter
4
letter highlights
4
highlights cost-effective
4
cost-effective simple
4

Similar Publications

Rare earth element erbium induces immune toxicity through the ROS/NF-κB pathway in zebrafish.

Fish Shellfish Immunol

January 2025

Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China. Electronic address:

The large-scale mining and utilization of rare earth elements have significantly increased their concentration in the environment, especially in regions surrounding mining areas. These environmentally-enriched rare earth elements accumulate in agricultural products and organisms through soil and water, potentially impacting in human health through the food chain. Erbium (Er), a rare earth element of the lanthanide series (Group IIIB), plays a crucial role in various modern technological applications.

View Article and Find Full Text PDF

Background: This study aimed to develop ion-releasing and antibacterial resin-based dental sealants comprising 3 to 6 wt% monocalcium phosphate monohydrate (MCPM, M), 3 to 6 wt% bioactive glass (BAG, B), and 3 to 6 wt% polylysine (PLS, P). The physical properties, mechanical performance, cytotoxicity, and inhibition of S. mutans biofilm by these materials were subsequently evaluated.

View Article and Find Full Text PDF

Glassphalt suffers from performance defects, especially against moisture damage and fatigue cracking. In this research, the performance of glassphalt modified with CF has been evaluated against moisture damage, fatigue cracking and rutting. Based on this, Modified Lottman, Wilhelmy Plate (WP), Indirect Tensile Stiffness Modulus (ITSM), Indirect Tensile Fatigue (ITF), and Repeated Load Axial (RLA) tests have been performed on glassphalt modified with CF.

View Article and Find Full Text PDF

Minimally Invasive Glass-Ceramic Restorations: Clinical and Patient-Reported Outcomes in Full-Mouth Rehabilitations.

J Dent

January 2025

Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, CH-8032, Zurich, Switzerland.

Objectives: To evaluate clinical outcomes (restoration survival, technical and biological complications), and patient-reported outcome measures (PROMs) of full mouth rehabilitation with minimally invasive glass-ceramic restorations after up to 12 years of clinical service.

Materials And Methods: Twenty individuals (12 females, 8 males) received full-mouth rehabilitation with minimally invasive tooth-supported glass-ceramic restorations during the years 2009 - 2017 and agreed to participate in a follow-up visit. Full dental and periodontal examinations were completed, and the restorations were evaluated according to United States Public Health Service (USPHS) criteria.

View Article and Find Full Text PDF

The impact of grinding on particle size, thermal behaviour, and sintering ability of yttrium aluminate glass microspheres with eutectic composition (76.8 mol % AlO and 23.2 mol % YO) was studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!