Laser-speckle-contrast shear wave (LSC-SW) imaging is an optical method for tracking the propagation of a transient shear wave. With high spatial resolution and sensitivity in detecting displacements, this method is suitable for performing mechanical measurements in vitro. Here, we present a LSC-SW tomographic imaging system for visualizing the propagating shear wave wavefront in four dimensions [i.e., three-dimensional (3D) space plus time]. The volumetric elasticity distribution of a sample is constructed by estimating the speeds of the shear waves propagating along multiple paths at different angles. The proposed method enables multidirectional estimations of the shear wave speed. The capabilities of the imaging system are demonstrated by evaluating isotropy (both homogeneous and heterogeneous) and anisotropy in semiturbid phantoms. The proposed system is suitable for the mechanical characterization of a 3D cell culture system, such as monitoring changes in fiber orientation during the remodeling of the extracellular matrix that is known to be strongly associated with the progression and characterization of tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.004809 | DOI Listing |
World J Gastroenterol
January 2025
Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China.
In this article, we comment on the article by Cheng published in recently. Posthepatectomy liver failure (PHLF) remains a leading cause of hepatectomy-related mortality and can be evaluated according to liver reserve function. Liver stiffness (LS) measured by ultrasonic elastography and spleen area demonstrate a strong correlation with hepatic proliferation, fibrosis, and portal vein congestion, thus indirectly reflecting liver reserve function.
View Article and Find Full Text PDFJ Clin Ultrasound
January 2025
Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Purpose: This study evaluates the effectiveness of lacrimal gland ultrasonography (LGUS) and shear wave elastography (SWE) in distinguishing primary Sjögren's syndrome (PSS) patients from healthy controls and examines their role in assessing disease activity and prognosis.
Methods: A total of 35 PSS patients and 23 age- and gender-matched healthy controls were included. LGUS was used to grade lacrimal gland structure, while SWE assessed gland elasticity.
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
Innovation (Camb)
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China.
The steep temperature gradient near the bottom of the mantle is known to generate a negative correlation between the shear wave velocity ( ) and the depth in most regions of the D″ layer, as detected by seismological observations. However, increasing with depth is observed at the D″ layer beneath Central America, where the Farallon slab sinks, and the origin of this anomaly has not been well constrained. Here, we calculate the thermoelastic constants and obtain the elastic wave velocities of hydrous phase H with various Al contents and cation configurations, which may act as a water carrier to the D″ layer.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!