Rationale: Triple-negative breast cancer has a dismal prognosis, especially once it has spread to other organs, due to the lack of effective treatments available at this time. Finding an effective treatment for metastatic triple-negative breast cancer remains an unmet medical need.
Patient Concerns: A 60-year-old woman was diagnosed with stage IIIC triple-negative breast cancer after undergoing a mastectomy. Her mastectomy was followed by adjuvant chemotherapy and radiation therapy. Approximately 1 year later, the patient presented with enlarging lymph nodes in her neck. A biopsy of a left supraclavicular lymph node was positive for recurrent disease. Positron emission tomography and computed tomography scans performed after the biopsy showed metabolic activity in the T6 vertebral body and the right level IIB lymph nodes.
Diagnoses: The patient was diagnosed with recurrent metastatic triple-negative breast carcinoma with metastases to the bone and lymph nodes.
Interventions: The patient was treated with weekly metronomic chemotherapy, sequential chemotherapy regimens, and immunotherapy.
Outcomes: The patient is now 68 years old and 7 years out from her diagnosis of metastatic disease. She achieved a complete response to her treatment and routine scans continue to show no evidence of recurrent disease.
Lessons: Utilizing sequential weekly metronomic chemotherapy regimens in combination with immunotherapy looks to be a promising treatment option for patients with metastatic triple-negative breast carcinoma. This is a second case where we were able to achieve long-term remission by using the above treatment strategy. These exciting results warrant further investigation of this treatment methodology. We hope that the treatment strategy described in this article can provide an outline for researchers and give patients with this disease more treatment options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756617 | PMC |
http://dx.doi.org/10.1097/MD.0000000000017251 | DOI Listing |
Cell Mol Biol Lett
January 2025
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.
Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.
Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC. Electronic address:
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Biological Chemistry, University of California, Irvine School of Medicine. Electronic address:
Objectives: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!