Background: Studies have reported mitophagy activation in renal tubular epithelial cells (RTECs) in acute kidney injury (AKI). Phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and E3 ubiquitin-protein ligase Parkin are involved in mitophagy regulation; however, little is known about the role of PINK1-Parkin mitophagy in septic AKI. Here we investigated whether the PINK1-Parkin mitophagy pathway is involved in septic AKI and its effects on cell apoptosis in vitro and on renal functions in vivo.

Methods: Mitophagy-related gene expression was determined using Western blot assay in human RTEC cell line HK-2 stimulated with bacterial lipopolysaccharide (LPS) and in RTECs from septic AKI rats induced by cecal ligation and perforation (CLP). Autophagy-related ultrastructural features in rat RTECs were observed using electron microscopy. Gain- and loss-of-function approaches were performed to investigate the role of the PINK1-Parkin pathway in HK-2 cell mitophagy. Autophagy activators and inhibitors were used to assess the effects of mitophagy modulation on cell apoptosis in vitro and on renal functions in vivo.

Results: LPS stimulation could significantly induce LC3-II and BECN-1 protein expression (LC3-II: 1.72 ± 0.05 vs. 1.00 ± 0.05, P < 0.05; BECN-1: 5.33 ± 0.57 vs. 1.00 ± 0.14, P < 0.05) at 4 h in vitro. Similarly, LC3-II, and BECN-1 protein levels were significantly increased and peaked at 2 h after CLP (LC3-II: 3.33 ± 0.12 vs. 1.03 ± 0.15, P < 0.05; BECN-1: 1.57 ± 0.26 vs. 1.02 ± 0.11, P < 0.05) in vivo compared with those after sham operation. Mitochondrial deformation and mitolysosome-mediated mitochondria clearance were observed in RTECs from septic rats. PINK1 knockdown significantly attenuated LC3-II protein expression (1.35 ± 0.21 vs. 2.38 ± 0.22, P < 0.05), whereas PINK1 overexpression markedly enhanced LC3-II protein expression (2.07 ± 0.21 vs. 1.29 ± 0.19, P < 0.05) compared with LPS-stimulated HK-2 cells. LPS-induced proapoptotic protein expression remained unchanged in autophagy activator-treated HK-2 cells and was significantly attenuated in PINK1-overexpressing cells, but was remarkably upregulated in autophagy inhibitor-treated and in PINK1-depleted cells. Consistent results were observed in flow cytometric apoptosis assay and in renal function indicators in rats.

Conclusion: PINK1-Parkin-mediated mitophagy might play a protective role in septic AKI, serving as a potential therapeutic target for septic AKI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819035PMC
http://dx.doi.org/10.1097/CM9.0000000000000448DOI Listing

Publication Analysis

Top Keywords

septic aki
12
phosphatase tensin
8
tensin homolog-induced
8
homolog-induced putative
8
putative kinase
8
mitophagy septic
8
acute kidney
8
kidney injury
8
role pink1-parkin
8
pink1-parkin mitophagy
8

Similar Publications

This study aims to explore the efficacy of neutrophil membrane nanovesicles (NMNVs) in the treatment of acute kidney injury caused by sepsis (S-AKI). Moreover, its effects on renal function indicators in plasma [creatinine (CREA), urea (UREA)], oxidative stress factor [malondialdehyde (MDA)], inflammatory factor [myeloperoxidase (MPO), histone H4 (H4), and macrophage inflammatory protein-2 (MIP-2)] are studied. Sixty SPF grade adult male Wistar rats in a healthy state under natural infection were randomly divided into blank, LSP, and experimental groups, with 20 rats in each group.

View Article and Find Full Text PDF

Sepsis, a condition characterized by a dysregulated host response to infection, can progress to septic shock and lead to various complications. The present study aimed to identify risk factors for the early clinical identification of sepsis patients at heightened risk of complications. In the present study, a total of 383 hospitalized patients with sepsis and positive blood cultures were enrolled.

View Article and Find Full Text PDF

: Renal replacement therapy with an oXiris hemofilter may be helpful for patients with acute kidney injury in conjunction with sepsis and septic shock. The aim of this study was to assess the impact of an oXiris membrane on septic shock patients. : All renal replacement therapies with oXiris (Baxter, Deerfield, IL, USA) performed between January 2018 and August 2021 were retrospectively analyzed.

View Article and Find Full Text PDF

: Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, remains a major challenge in ICUs. This study evaluated whether combining haemoadsorption therapy with continuous renal replacement therapy (CRRT) reduces ICU and short-term mortality in patients with severe septic shock and acute kidney injury (AKI) requiring CRRT. : A single-centre retrospective cohort study was conducted at Rambam Health Care Campus, Haifa, Israel, from January 2018 to February 2024.

View Article and Find Full Text PDF

The TyG index serves as a valuable tool for evaluating insulin resistance. An elevated TyG has shown a strong association with the occurrence of acute kidney injury (AKI). Nevertheless, existing literature does not address the relationship between the TyG index and acute kidney injury in patients with sepsis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!