Tenosynovial giant cell tumour (TGCT) is a group of rare soft tissues neoplasia affecting synovial joints, bursae and tendon sheaths and is classified as localized type or diffuse type. The diffuse type (TGCT-D), also known as 'pigmented villonodular (teno)synovitis' is characterized by local aggressivity, with invasion and destruction of adjacent soft-tissue structures, and high local recurrence rate. Radical surgery remains the standard therapy while adjuvant radiotherapy may help to control local spread. Malignant TGCT is characterized by high rate of local recurrences and distant metastasis. Few cases of malignant TGCT and very few evidences on systemic therapies are described in the literature, so, to date, no systemic treatment is approved for this rare disease. We report the case of a malignant TGCT patient treated with many different systemic therapies, including chemotherapy and tyrosine-kinase inhibitors, and performed a review of the literature on the systemic treatment options of this rare tumour.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903349PMC
http://dx.doi.org/10.1097/CAD.0000000000000844DOI Listing

Publication Analysis

Top Keywords

systemic treatment
12
malignant tgct
12
treatment options
8
tenosynovial giant
8
giant cell
8
cell tumour
8
type diffuse
8
diffuse type
8
systemic therapies
8
literature systemic
8

Similar Publications

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.

View Article and Find Full Text PDF

: Community-acquired methicillin-resistant (CA-MRSA) greatly complicates the treatment of skin and soft tissue infections (SSTI). It was previously found that subcutaneous (SQ) treatment with the mononuclear phagocyte (MP)-selective activator complements peptide-derived immunostimulant-02 (CPDI-02; formerly EP67) and increases prophylaxis of outbred CD-1 mice against SQ infection with CA-MRSA. Here, we determined if treatment with CPDI-02 also increases curative protection.

View Article and Find Full Text PDF

Drug Delivery Across the Blood-Brain Barrier: A New Strategy for the Treatment of Neurological Diseases.

Pharmaceutics

December 2024

Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.

The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases.

View Article and Find Full Text PDF

A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity.

Pharmaceutics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.

Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!