A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast Supervised Topic Models for Short Text Emotion Detection. | LitMetric

With the development of social network platforms, discussion forums, and question answering websites, a huge number of short messages that typically contain a few words for an individual document are posted by online users. In these short messages, emotions are frequently embedded for communicating opinions, expressing friendship, and promoting influence. It is quite valuable to detect emotions from short messages, but the corresponding task suffers from the sparsity of feature space. In this article, we first generate term groups co-occurring in the same context to enrich the number of features. Then, two basic supervised topic models are proposed to associate emotions with topics accurately. To reduce the time cost of parameter estimation, we further propose an accelerated algorithm for our basic models. Extensive evaluations using three short corpora validate the efficiency and effectiveness of the accelerated models for predicting the emotions of unlabeled documents, in addition to generate the topic-level emotion lexicons.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2019.2940520DOI Listing

Publication Analysis

Top Keywords

short messages
12
supervised topic
8
topic models
8
short
5
fast supervised
4
models
4
models short
4
short text
4
text emotion
4
emotion detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!