Considering the uncertain nonstrict nonlinear system with dead-zone input, an adaptive neural network (NN)-based finite-time online optimal tracking control algorithm is proposed. By using the tracking errors and the Lipschitz linearized desired tracking function as the new state vector, an extended system is present. Then, a novel Hamilton-Jacobi-Bellman (HJB) function is defined to associate with the nonquadratic performance function. Further, the upper limit of integration is selected as the finite-time convergence time, in which the dead-zone input is considered. In addition, the Bellman error function can be obtained from the Hamiltonian function. Then, the adaptations of the critic and action NN are updated by using the gradient descent method on the Bellman error function. The semiglobal practical finite-time stability (SGPFS) is guaranteed, and the tracking errors convergence to a compact set by zero in a finite time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2019.2939424 | DOI Listing |
Anal Chem
January 2025
Institute for Advanced Optics, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.
View Article and Find Full Text PDFNeuroradiol J
January 2025
Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA.
This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps.
View Article and Find Full Text PDFPlant Methods
January 2025
School of Electronic and Information Engineering, Liaoning Technical University, Huludao, 125105, China.
Apricot trees, serving as critical agricultural resources, hold a significant role within the agricultural domain. Conventional methods for detecting pests and diseases in these trees are notably labor-intensive. Many conditions affecting apricot trees manifest distinct visual symptoms that are ideally suited for precise identification and classification via deep learning techniques.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!