Batch-processing machines (BPMs) can process a number of jobs at a time, which can be found in many industrial systems. This article considers a single BPM scheduling problem with unequal release times and job sizes. The goal is to assign jobs into batches without breaking the machine capacity constraint and then sort the batches to minimize the makespan. A self-adaptive differential evolution algorithm is developed for addressing the problem. In our proposed algorithm, mutation operators are adaptively chosen based on their historical performances. Also, control parameter values are adaptively determined based on their historical performances. Our proposed algorithm is compared to CPLEX, existing metaheuristics for this problem and conventional differential evolution algorithms through comprehensive experiments. The experimental results demonstrate that our proposed self-adaptive algorithm is more effective than other algorithms for this scheduling problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2019.2939219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!