A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Properties of New Glass-Ionomer Restorative Systems Marketed for Stress-Bearing Areas. | LitMetric

Objectives: The purpose of this study was to evaluate the properties (fracture toughness, surface hardness) of newer conventional glass-ionomer restorative materials that are marketed for posterior stress-bearing areas compared with more traditional glass-ionomer restorative materials marketed for non-load-bearing areas and composite-resin restorative materials.

Methods And Materials: Notched-beam fracture toughness specimens were created in a mold with each tested material (Equia Forte, GC America, with and without a surface coating of Equia Forte Coat; Ketac Universal, 3M/ESPE; ChemFil Rock, Dentsply; Fuji IX GP Extra, GC; Ionostar Molar, VOCO; Filtek Z250, 3M/ESPE; Filtek Supreme Ultra, 3M/ESPE) and fractured using a universal testing machine after 24 hours of storage. Hardness values were determined on the surface of the fracture toughness specimens using a hardness tester. Data were analyzed with a one-way ANOVA and Tukey's post hoc test per property (alpha=0.05).

Results: The composite-resin restorative materials had significantly greater fracture toughness than the glass-ionomer materials. There was no significant difference in fracture toughness between the glass-ionomer materials. The use of a resin coating significantly increased the surface hardness of the newer glass ionomer marketed for stress-bearing areas.

Conclusions: Fracture toughness was not improved with the newer glass-ionomer restorative materials marketed for stress-bearing areas compared to the conventional glass-ionomer materials, however a resin coating provided greater surface hardness.

Download full-text PDF

Source
http://dx.doi.org/10.2341/18-176-LDOI Listing

Publication Analysis

Top Keywords

fracture toughness
24
glass-ionomer restorative
16
restorative materials
16
marketed stress-bearing
12
stress-bearing areas
12
surface hardness
12
materials marketed
12
glass-ionomer materials
12
hardness newer
8
conventional glass-ionomer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!