Abnormal peptide assembly and aggregation is associated with an array of neurodegenerative diseases including Alzheimer's disease (AD). A detailed understanding of how nanostructured materials such as oxidized graphene perturb the peptide assembly and subsequently induce fibril dissociation may open new directions for the development of potential AD treatments. Here, we investigate the impact of surface inhomogeneity of graphene oxide (GO) on the assembly of amyloid-beta Aβ peptides on GO surfaces with different degrees of oxidation using molecular dynamics simulations. Interestingly, nonuniform GO nanosheets (in terms of oxidation sites) have a much stronger perturbation effect on the structure of Aβ assembly. The Aβ peptides exhibit a remarkable tendency in binding to the scattered interfaces between unoxidized and oxidized regions, which induces the dissociation of Aβ amyloid fibril. These findings should deepen our understanding of surface-induced peptide dissociation and stimulate discovery of alternative AD treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.9b07359 | DOI Listing |
Langmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFLife Sci Alliance
April 2025
https://ror.org/0040axw97 Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly.
View Article and Find Full Text PDFSci Adv
January 2025
School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).
View Article and Find Full Text PDFNano Lett
January 2025
Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Technische Universität München, Division of Peptide Biochemistry, Emil-Erlenmeyer-Forum 5, 85354, Freising, GERMANY.
Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!