H-Bonding abilities of ionic liquids (ILs) along with hydrophobicity and cooperativity effects increases their hydration numbers making them capable for dissolving sparingly soluble organic molecules in aqueous or polar nonaqueous media, and hence ILs are potential candidates in pharmaceutical and medicinal sciences besides the different technological and academic interests. In this work, dielectric spectra were measured and analyzed for diethylammonium-based protic ionic liquids (PILs), imidazolium-based aprotic ionic liquids (APILs), and their aqueous solutions (∼0.02 to ∼0.8 mol·dm) over a frequency range from 0.01 to 50 GHz using time domain reflectometry at 298.15 K. The Cole-Cole (CC) model for neat ILs and a combination of the Debye and Cole-Cole (D+CC) models for their aqueous solutions best describes the experimental dielectric relaxation spectra. Higher values of static permittivity and relaxation time were observed for less viscous PILs compared to more viscous APILs due to the existence of hydrogen bonding in PILs, ionic translational motion, and the existence of transient, short-lived proton transfer responsible for solvent polarization. For aqueous solutions of ionic liquids, the fast collective relaxation of solvent (bulk water) observed at higher frequencies (∼20 GHz) and slow relaxation is detected at lower frequency (∼5 to ∼10 GHz) due to hydrophobic hydration with or without cooperative H-bonding effect. The apparent concentrations of bulk water, , and slow water, , were used to obtain effective hydration numbers to understand the ion solvation. Hydration numbers revealed that imidazolium-based APILs are weakly hydrated than the diethylammonium-based PILs. Static permittivity and relaxation time of pure ILs and of aqueous solutions of studied ILs are discussed in terms of effect on alkyl chain length of cation/anion, H-bonding abilities of ions, dipole moments of ions, viscosity, hydrophobic effects, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.9b07914DOI Listing

Publication Analysis

Top Keywords

ionic liquids
20
aqueous solutions
16
hydration numbers
12
dielectric relaxation
8
aprotic ionic
8
time domain
8
domain reflectometry
8
h-bonding abilities
8
static permittivity
8
permittivity relaxation
8

Similar Publications

It is necessary to overcome the relatively low conductivity of ionic liquids (ILs) caused by steric hindrance effects to improve their ability to passivate defects and inhibit ion migration to boost the photovoltaic performance of perovskite solar cells (PSCs). Herein, we designed and prepared a kind of low-concentration 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF) diluted with propylene carbonate (PC) via an ultrasonic technique (PC/IL). The decrease in the decomposition temperature related to the IL part and the increase in the sublimation temperature related to the PC part facilitated the use of PC/IL to effectively delay the crystallization process and passivate the defects in multiple ways to obtain high-quality perovskite films.

View Article and Find Full Text PDF

The recovery of palladium from aqueous solutions is important due to its critical role in various industrial applications and the growing demand for sustainable resource management. This study investigates the potential of hybrid materials composed of MgAl layered double hydroxides (LDHs), chitosan, and ionic liquids (methyl trialchil ammonium chloride) for the efficient adsorption of palladium ions from low-concentration aqueous solutions. Comprehensive characterization techniques, including X-ray diffraction (RX), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TG), were employed to elucidate the structural and compositional properties of the hybrid materials.

View Article and Find Full Text PDF

Green Pre-Treatment Strategy Using Ionic Liquid-Based Aqueous Two-Phase Systems for Pesticide Determination in Strawberry Samples.

Foods

December 2024

Department of Physical Chemistry, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia.

Pesticides used in agriculture can contaminate foods like fruits and vegetables, posing health risks to consumers and highlighting the need for effective residue monitoring. This study explores aqueous two-phase systems (ATPSs) comprising phosphonium or ammonium ionic liquids (ILs) combined with ammonium sulfate as an alternative pre-treatment method for extracting and concentrating the pesticides clomazone, pyraclostrobin, and deltamethrin from strawberry samples. Liquid-liquid equilibrium measurements for each ATPS were conducted, followed by extraction experiments to determine the most efficient systems for pesticide extraction.

View Article and Find Full Text PDF

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!