Biochemical mechanisms regulating salt tolerance in sunflower.

Plant Signal Behav

Laboratory of Plant Physiology, Department of Botany, University of Delhi, Delhi, India.

Published: July 2020

Sunflower plants are semi-tolerant to salt stress. Calcium modulates the expression of oubain-sensitive ATPases, responsible for sodium fluxes in cells. Salt stress delays degradation of oil body (OB) membrane proteins. Serotonin and melatonin contents are elevated in response to salt stress. Melatonin can detoxify the seedlings of elevated reactive oxygen species (ROS) levels. Enhanced nitric oxide (NO) expression correlates with NaCl-induced modulation of seedling growth. Salt stress enhances S-nitrosylation of cytosolic proteins in seedling cotyledons, while in roots, denitrosylation of proteins is observed. Lipid peroxide content and glutathione peroxidase (GPX4) activity are enhanced in response to salt stress. Salt stress downregulates the activity of superoxide dismutase (SOD) and upregulates the activity of GPX4 and glutathione reductase (GR). Heme oxygenase-1 (HO-1) abundance in cells surrounding the secretory canal in seedling cotyledons is enhanced in response to salt stress. NO negatively regulates the total glutathione homeostasis and regulates polyamine and glycine betaine homeostasis in response to salt stress. An intricate biochemical crosstalk is thus observed to control salt tolerance mechanisms in sunflower.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866699PMC
http://dx.doi.org/10.1080/15592324.2019.1670597DOI Listing

Publication Analysis

Top Keywords

salt stress
32
response salt
16
salt
10
salt tolerance
8
stress
8
seedling cotyledons
8
enhanced response
8
biochemical mechanisms
4
mechanisms regulating
4
regulating salt
4

Similar Publications

CRISPR-Cas-mediated adaptation of Thermus thermophilus HB8 to environmental stress conditions.

Arch Microbiol

January 2025

Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden.

Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.

View Article and Find Full Text PDF

Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.

View Article and Find Full Text PDF

The current study aimed to assess the preventive effects of aqueous leaf extract of Pistacia lentiscus (ALEPL) against Oxaliplatin (OXA)-induced DNA damage, hepatic injury, and oxidative stress. The in vitro cytotoxic and genotoxic effects of OXA and ALEPL on HCT116 colon cancer cells were evaluated using the MTT (Tetrazolium salt reduction) assay and comet assay. The in vivo study involved 24 female NMRI (Naval Medical Research Institute) mice that were equally divided into four groups as follows: Control group, ALEPL-treated group (100 mg/kg), OXA-treated group (7 mg/kg), and ALEPL-treated group (100mg/kg) + OXA (7mg/kg).

View Article and Find Full Text PDF

Genome-wide DNA methylation analysis of sorghum leaves following foreign GA3 exposure under salt stress.

Genomics

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, Jiangsu, China. Electronic address:

Sorghum is an increasingly popular topic of research in elucidating survival and adaptation approaches to augmented salinity. Nonetheless, little is known about the outcome and modulatory networks involved in the gibberellic acid (GA3)-induced salt stress alleviation in sorghum. Here, we identified 50 mg/L GA3 as the optimal concentration for sorghum ('Jitian 3') development under salt stress.

View Article and Find Full Text PDF

Background: Resilience refers to the ability to adapt or recover from stress. There is increasing appreciation that it plays an important role in wholistic patient-centered care and may affect patient outcomes, including those of orthopaedic surgery. Despite being a focus of the current orthopaedic evidence, there is no strong understanding yet of whether resilience is a stable patient quality or a dynamic one that may be modified perioperatively to improve patient-reported outcome scores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!