Four diplatinum(II) complexes with the formula [Pt(pypm)(μ-F)] (, -) bearing both a pyridine-pyrimidinate chelate and formamidinate bridge, where (pypm)H and FH stand for 5-(pyridin-2-yl)-2-(trifluoromethyl)pyrimidine and functional formamidines with various substituents of Pr ( = 1), Ph ( = 2), CHBu ( = 3), and CHCF ( = 4), were synthesized en route from a mononuclear intermediate represented by [Pt(pypm)Cl(FH)] (). Single-crystal X-ray diffraction studies confirmed the structure of and comprised of an individual "Pt(pypm)" unit and two "Pt(pypm)" units with a Pt···Pt distance of 2.8845(2) Å, respectively. Therefore, in contrast to the structured emission of mononuclear with the first vibronic peak wavelength at 475 nm, all other diplatinum complexes with shortened Pt···Pt separation exhibited greatly red shifted and structureless metal-metal to ligand charge transfer (MMLCT) emission that extended into the near-infrared region in solid states. Their photophysical characteristics were measured under three distinctive morphological states (i.e., crystals, sublimed powders, and vacuum-deposited thin films) by steady-state UV-vis spectroscopy, while retention of Pt···Pt interactions in deposited thin films of and - was confirmed using Raman spectroscopy, demonstrating lowered Pt···Pt stretching at 80-200 cm. Most importantly, complexes - exhibited a gradual red shift with the trends crystals < sublimed powders < vacuum-deposited thin films, a result of increased intermolecular π-π stacking interactions and Pt···Pt interactions, while crystalline samples exhibited the highest luminescence among all three morphological states due to the fewest defects in comparison to other morphologies. Finally, was selected as a nondoped emitter for the fabrication of NIR-emitting OLEDs, giving an electroluminescence peak at 767 nm and a maximum external quantum efficiency of 0.14% with negligible roll-off.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b01754DOI Listing

Publication Analysis

Top Keywords

thin films
12
diplatinumii complexes
8
morphological states
8
crystals sublimed
8
sublimed powders
8
powders vacuum-deposited
8
vacuum-deposited thin
8
pt···pt interactions
8
pt···pt
5
near-infrared emission
4

Similar Publications

Ultralow k covalent organic frameworks enabling high fidelity signal transmission and high temperature electromechanical sensing.

Nat Commun

December 2024

Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.

As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization.

View Article and Find Full Text PDF

High-performance 2D electronic devices enabled by strong and tough two-dimensional polymer with ultra-low dielectric constant.

Nat Commun

December 2024

Department of Materials Science and NanoEngineering and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.

As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-k dielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc.

View Article and Find Full Text PDF

This study introduces a novel method for achieving highly ordered-crystalline InGaO [0 ≤ x ≤ 0.6] thin films on Si substrates at 250 °C using plasma-enhanced atomic-layer-deposition (PEALD) with dual seed crystal layers (SCLs) of γ-AlO and ZnO. Field-effect transistors (FETs) with random polycrystalline InGaO channels (grown without SCLs) show a mobility (µFE) of 85.

View Article and Find Full Text PDF

Unlocking Micro-Origami Energy Storage.

ACS Appl Energy Mater

December 2024

Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany.

Transforming thin films into high-order stacks has proven effective for robust energy storage in macroscopic configurations like cylindrical, prismatic, and pouch cells. However, the lack of tools at the submillimeter scales has hindered the creation of similar high-order stacks for micro- and nanoscale energy storage devices, a critical step toward autonomous intelligent microsystems. This Spotlight on Applications article presents recent advancements in micro-origami technology, focusing on shaping nano/micrometer-thick films into three-dimensional architectures to achieve folded or rolled structures for microscale energy storage devices.

View Article and Find Full Text PDF

Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!