Reactivity of N3-Methyl-2'-Deoxyadenosine in Nucleosome Core Particles.

Chem Res Toxicol

Department of Chemistry , Johns Hopkins University, 3400 North Charles Street , Baltimore , Maryland 21218 , United States.

Published: October 2019

N3-Methyl-2'-deoxyadenosine (MdA) is the major dA methylation product in duplex DNA. MdA blocks DNA replication and undergoes depurination at significantly higher rates than the native nucleotide from which it is derived. Recent reports on the effects of the nucleosome core particle (NCP) environment on the reactivity of N7-methyl-2'-deoxyguanosine (MdG) inspired this investigation concerning the reactivity of MdA in NCPs. NCPs containing MdA at selected positions were produced using a strategy in which the minor groove binding Me-Lex molecule serves as a sequence specific methylating agent. Hydrolysis of the glycosidic bond in MdA to form abasic sites (AP) is suppressed in a NCP. Experiments using histone variants indicate that the proximal, highly basic N-terminal tails are partially responsible for the decreased depurination rate constant. MdA also forms cross-links with histone proteins. The levels of MdA-histone DNA-protein cross-links (DPC) decrease significantly over time and are replaced by those involving AP. The time dependent decrease in DPC is attributed to the reversibility of their formation and the relatively rapid rate of AP formation from MdA. Overall, MdA reactivity in NCPs qualitatively resembles that of MdG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803048PMC
http://dx.doi.org/10.1021/acs.chemrestox.9b00299DOI Listing

Publication Analysis

Top Keywords

nucleosome core
8
mda
8
reactivity
4
reactivity n3-methyl-2'-deoxyadenosine
4
n3-methyl-2'-deoxyadenosine nucleosome
4
core particles
4
particles n3-methyl-2'-deoxyadenosine
4
n3-methyl-2'-deoxyadenosine mda
4
mda major
4
major methylation
4

Similar Publications

FRET analysis of the unwrapping of nucleosomal DNA containing a sequence characteristic of the + 1 nucleosome.

Sci Rep

January 2025

Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan.

Sequence-dependent mechanical properties of DNA could play essential roles in nuclear processes by affecting histone-DNA interactions. Previously, we found that the DNA entry site of the first nucleosomes from the transcription start site (+ 1 nucleosome) in budding yeast enriches AA/TT steps, but not the exit site, and the biased presence of AA/TT in the entry site was associated with the transcription levels of yeast genes. Because AA/TT is a rigid dinucleotide step, we considered that AA/TT causes DNA unwrapping.

View Article and Find Full Text PDF

In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized.

View Article and Find Full Text PDF

Organisms with smaller genomes often perform multiple functions using one multi-subunit protein complex. The Silent Information Regulator complex (SIRc) carries out all of the core functions of heterochromatin. SIR complexes first drive the initiation and spreading of histone deacetylation in an iterative manner.

View Article and Find Full Text PDF

The chromatin of the centromere provides the assembly site for the mitotic kinetochore that couples microtubule attachment and force production to chromosome movement in mitosis. The chromatin of the centromere is specified by nucleosomes containing the histone H3 variant CENP-A. The constitutive centromeric-associated network (CCAN) and kinetochore are assembled on CENP-A chromatin to enable chromosome separation.

View Article and Find Full Text PDF

We theoretically investigate how the intranuclear environment influences the charge of a nucleosome core particle (NCP)-the fundamental unit of chromatin consisting of DNA wrapped around a core of histone proteins. The molecular-based theory explicitly considers the size, shape, conformation, charge, and chemical state of all molecular species-thereby linking the structural state with the chemical/charged state of the system. We investigate how variations in monovalent and divalent salt concentrations, as well as pH, affect the charge distribution across different regions of an NCP and quantify the impact of charge regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!