Extracellular matrix (ECM) proteins, and most prominently, fibronectin (Fn), are routinely used in the form of adsorbed pre-coatings in an attempt to create a cell-supporting environment in both two- and three-dimensional cell culture systems. However, these protein coatings are typically deposited in a form which is structurally and functionally distinct from the ECM-constituting fibrillar protein networks naturally deposited by cells. Here, the cell-free and scalable synthesis of freely suspended and mechanically robust three-dimensional (3D) networks of fibrillar fibronectin (fFn) supported by tessellated polymer scaffolds is reported. Hydrodynamically induced Fn fibrillogenesis at the three-phase contact line between air, an Fn solution, and a tessellated scaffold microstructure yields extended protein networks. Importantly, engineered fFn networks promote cell invasion and proliferation, enable in vitro expansion of primary cancer cells, and induce an epithelial-to-mesenchymal transition in cancer cells. Engineered fFn networks support the formation of multicellular cancer structures cells from plural effusions of cancer patients. With further work, engineered fFn networks can have a transformative impact on fundamental cell studies, precision medicine, pharmaceutical testing, and pre-clinical diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851443 | PMC |
http://dx.doi.org/10.1002/adma.201904580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!