A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The thermally induced decarboxylation mechanism of a mixed-oxidation state carboxylate-based iron metal-organic framework. | LitMetric

Investigations into a thermally generated decarboxylation mechanism for metal site activation and the generation of mesopores in a carboxylate iron-based MOF, PCN-250, have been conducted. PCN-250 exhibits an interesting oxidation state change during thermal treatment under inert atmospheres or vacuum conditions, transitioning from an Fe(iii) cluster to a Fe(ii)Fe(iii) cluster. To probe this redox event and discern a mechanism of activation, a combination of thermogravimetric analysis, gas sorption, scanning electron microscopy, Fe Mössbauer spectroscopy, gas chromatography-mass spectrometry, and X-ray diffraction studies were conducted. The results suggest that the iron-site activation occurs due to ligand decarboxylation above 200 °C. This is also consistent with the generation of a missing cluster mesoporous defect in the framework. The resulting mesoporous PCN-250 maintains high thermal stability, preserving crystallinity after multiple consecutive high-temperature regeneration cycles. Additionally, the thermally reduced PCN-250 shows improvements in the total uptake capacity of methane and CO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201376PMC
http://dx.doi.org/10.1039/c9cc04555dDOI Listing

Publication Analysis

Top Keywords

decarboxylation mechanism
8
thermally induced
4
induced decarboxylation
4
mechanism mixed-oxidation
4
mixed-oxidation state
4
state carboxylate-based
4
carboxylate-based iron
4
iron metal-organic
4
metal-organic framework
4
framework investigations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!