Sub-wavelength grating (SWG) metamaterials have been considered to provide promising solutions in the development of next-generation photonic integrated circuits. In recent years, increasied interest has been paid to silicon photonic planar biosensors based on SWG geometries for performance enhancement. In this work, we demonstrate a highly sensitive label-free phase-shifted Bragg grating (PSBG) sensing configuration, which consists of sub-wavelength block arrays in both propagation and transverse directions. By introducing salt serial dilutions and electrostatic polymers assays, bulk and surface sensitivities of the proposed sensor are characterized, obtaining measured results up to 579.2 nm/RIU and 1914 pm/nm, respectively. Moreover, the proposed multi-box PSBG sensor presents an improved quality factor as high as , roughly 3-fold of the microring-based counterpart, which further improves the detection limit. At last, by employing a biotin-streptavidin affinity assay, the capability for small molecule monitoring is exemplified with a minimum detectable concentration of biotin down to .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757469 | PMC |
http://dx.doi.org/10.1364/BOE.10.004825 | DOI Listing |
Sensors (Basel)
November 2024
Photonics Research Group, Department of Electrical and Information Engineering, Politecnico di Bari, 70126 Bari, Italy.
This study explores the achievement of a tunable true time-delay (TTD) system for a microwave phased-array antenna (MPAA) by incorporating the reversible phase-transition property of phase-change material (PCM) with Bragg gratings (BGs) and a cascade of three phase-shifted Bragg grating resonators (CPSBGRs). The goal was to design a low-power-consuming, non-volatile highly tunable compact TTD system for beam steering. A programmable on/off reflector was designed by changing a PCM-incorporated BG/CPSBGR from one phase to another.
View Article and Find Full Text PDFSensors (Basel)
October 2024
INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, 4169-007 Porto, Portugal.
This paper presents a new type of phase-shifted Fiber Bragg Grating (FBG): the sliced-FBG (SFBG). The fabrication process involves cutting a standard FBG inside its grating region. As a result, the last grating pitch is shorter than the others.
View Article and Find Full Text PDFOpt Eng
March 2024
Georgia Institute of Technology, G.W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States.
An acousto-optic (AO)-based electric field sensor is presented for time domain measurement under magnetic resonance imaging (MRI). A fully MR-compatible sensor is designed and fabricated using a phase-shifted fiber Bragg grating mechanically coupled to a piezoelectric transducer. Mechanical resonance of the piezoelectric transducer is matched to the operating frequencies of commonly used MRI systems to increase the sensitivity of the sensor.
View Article and Find Full Text PDFLight Sci Appl
July 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Ultrasound sensors play an important role in biomedical imaging, industrial nondestructive inspection, etc. Traditional ultrasound sensors that use piezoelectric transducers face limitations in sensitivity and spatial resolution when miniaturized, with typical sizes at the millimeter to centimeter scale. To overcome these challenges, optical ultrasound sensors have emerged as a promising alternative, offering both high sensitivity and spatial resolution.
View Article and Find Full Text PDFWe propose and experimentally demonstrate a dual-wavelength distributed feedback (DFB) laser array utilizing a four-phase-shifted sampled Bragg grating. By using this grating, the coupling coefficient is enhanced by approximately 2.83 times compared to conventional sampled Bragg gratings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!