Voice disorders affect a large number of adults in the United States, and their clinical evaluation heavily relies on laryngeal videostroboscopy, which captures the medial-lateral and anterior-posterior motion of the vocal folds using stroboscopic sampling. However, videostroboscopy does not provide direct visualization of the superior-inferior movement of the vocal folds, which yields important clinical insight. In this paper, we present a novel technology that complements videostroboscopic findings by adding the ability to image the coronal plane and visualize the superior-inferior movement of the vocal folds. The technology is based on optical coherence tomography, which is combined with videostroboscopy within the same endoscopic probe to provide spatially and temporally co-registered images of the mucosal wave motion, as well as vocal folds subsurface morphology. We demonstrate the capability of the rigid endoscopic probe, in a benchtop setting, to characterize the complex movement and subsurface structure of the aerodynamically driven excised larynx models within the 50 to 200 Hz phonation range. Our preliminary results encourage future development of this technology with the goal of its use for laryngeal imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6757476 | PMC |
http://dx.doi.org/10.1364/BOE.10.004450 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!