TNFα inhibitor C87 sensitizes EGFRvIII transfected glioblastoma cells to gefitinib by a concurrent blockade of TNFα signaling.

Cancer Biol Med

Department of Neuro-Oncology and Neurosurgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China.

Published: August 2019

Objective: More than half of human glioblastomas show gene amplification and mutation, but EGFR inhibitors have not been effective in treating EGFR-positive glioblastoma patients. The mechanism behind this type of primary resistance is not well understood. The aim of this study was to investigate gefitinib resistance in glioblastoma, and explore ways to circumvent this significant clinical problem.

Methods: MTT method was used to test the cell viability after EGFR-positive glioblastoma cells were treated with indicated drugs; real-time quantitative PCR method was included to detect the TNFα mRNA levels in glioma tissues and cell lines. ELISA was introduced to measure the TNFα protein levels in cell culture supernatant of glioblastoma cells treated with gefitinib. Western blot was used to detect the activity change of intracellular kinases in drug-treated glioblastoma cells. Two mouse xenograft tumor models were carried out to evaluate the effects of a combination of EGFR and TNFα inhibitors.

Results: We found that glioblastoma resistance to gefitinib may be mediated by an adaptive pro-survival TNFα-JNK-Axl signaling axis, and that high TNFα levels in the glioblastoma microenvironment may further intensify primary resistance. A combination of the TNFα-specific small-molecule inhibitor C87 and gefitinib significantly enhanced the sensitivity of glioblastoma cells to gefitinib and .

Conclusions: Our findings provide a possible explanation for the primary resistance of glioblastoma to EGFR inhibitors and suggest that dual blockade of TNFα and EGFR may be a viable therapeutic strategy for the treatment of patients with chemotherapy-refractory advanced glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743627PMC
http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0011DOI Listing

Publication Analysis

Top Keywords

glioblastoma cells
20
primary resistance
12
glioblastoma
11
inhibitor c87
8
cells gefitinib
8
blockade tnfα
8
egfr inhibitors
8
egfr-positive glioblastoma
8
resistance glioblastoma
8
cells treated
8

Similar Publications

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Characterization of Bozitinib as a potential therapeutic agent for MET-amplified gastric cancer.

Commun Biol

January 2025

Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

Hyperactive c-Met signaling pathway caused by altered MET is a common mechanism underlying gastric cancer and represents an attractive target for the treatment of gastric cancer with MET alterations. However, no c-Met kinase inhibitors are currently approved specifically for the treatment of c-Met-amplified gastric cancer. Recently, bozitinib, a highly selective c-Met kinase inhibitor, has shown remarkable potency in selectively inhibiting MET-altered non-small cell lung cancer and secondary glioblastoma.

View Article and Find Full Text PDF

The present study investigated the impact of GABAergic signaling and miRNA expression on glioblastoma multiforme (GBM) growth within the medial prefrontal cortex (mPFC) and its associated cognitive and emotional impairments. The implantation of C6 cells into the mPFC induced GBM in this brain region (referred to as the mPFC-GBM) in male Wistar rats via stereotaxic surgery, as confirmed by Magnetic Resonance Imaging (MRI), and Hematoxylin and Eosin (H&E) staining. Repeated microinjections of muscimol, a potent GABA receptor agonist, directly into the mPFC-GBM (1µg/rat/2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!