A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of ZnO Nanoparticles and Ethylenediamine-,'-Disuccinic Acid on Seed Germination of Four Different Plants. | LitMetric

The release of nanoparticles and biodegradable chelating agents into the environment may cause toxicological and ecotoxicological effects. The aim of this study is to determine the ecotoxic effects of zinc oxide (ZnO) nanoparticles and ethylenediamine disuccinic acid (EDDS) on most cultured four plants. The durum wheat, bread wheat, barley, and rye are exposed to 5 mL 10 mg L ZnO nanoparticles and 10 mg L EDDS in the seed germination stage. Results show that these different plant species have different responses to ZnO nanoparticles and EDDS. The germination percentage of bread wheat and rye decreases in the application of ZnO nanoparticles while the germination of durum wheat and barley increases as much as in radicle elongation and seedling vigor. While ZnO treatment causes a decrease in bread wheat and rye germinated rat in the range of 33-14.3%, respectively, there is no change in germination rate of these plants at EDDS treatment. In addition, EDDS treatment positively affects barley germination rate. In conclusion, it is clear that ZnO nanoparticles have more toxic effects on bread wheat and rye than EDDS, while barley is positively affected by ZnO nanoparticles and EDDS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733394PMC
http://dx.doi.org/10.1002/gch2.201800111DOI Listing

Publication Analysis

Top Keywords

zno nanoparticles
28
bread wheat
16
nanoparticles edds
12
wheat rye
12
nanoparticles
8
seed germination
8
durum wheat
8
wheat barley
8
germination rate
8
edds treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!