Chlorine is a large-scale chemical commodity produced via the chloralkali process, which involves the electrolysis of brine in a membrane-based electrochemical reactor. The reaction is normally driven by grid electricity; nevertheless, the required combination of voltage-current can be guaranteed using renewable power (i.e., photovoltaic electricity). This study demonstrates an off-grid solar-powered chlorine generator that couples a novel planar solar concentrator, multijunction InGaP/GaAs/InGaAsNSb solar cells and an electrochemical cell fabricated via additive manufacturing. The planar solar concentrator consists of an array of seven custom injection-molded lenses and uses microtracking to maintain a ± 40° wide angular acceptance. Triple-junction solar cells provide the necessary potential (open-circuit voltage, = 3.16 V) to drive the electrochemical reactions taking place at a De Nora DSA insoluble anode and a nickel cathode. This chloralkali generator is tested under real atmospheric conditions and operated at a record 25.1% solar-to-chemical conversion efficiency (SCE). The device represents the proof-of-principle of a new generation stand-alone chlorine production system for off-grid utilization in remote and inaccessible locations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607182PMC
http://dx.doi.org/10.1002/gch2.201700095DOI Listing

Publication Analysis

Top Keywords

solar concentrator
12
chloralkali generator
8
planar solar
8
solar cells
8
solar
6
251% efficient
4
efficient stand-alone
4
stand-alone solar
4
solar chloralkali
4
generator employing
4

Similar Publications

Efficient luminescent solar concentrators based on solvent polarity induced multiple-colored carbon dots.

J Colloid Interface Sci

January 2025

State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 PR China. Electronic address:

Luminescent solar concentrators (LSCs) are large scale sunlight collector and can be used for building-integrated photovoltaics (BIPV). Achieving high-performance LSCs requires fluorophores with broad absorption, high quantum yield and a large Stokes shift. Nevertheless, conventional high-efficiency LSCs typically rely on heavy metal-based quantum dots as fluorophores.

View Article and Find Full Text PDF

Correlative Raman-Voltage Microscopy Revealing the Localized Structure-Stress Relationship in Silicon Solar Cells.

ACS Nano

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.

Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.

View Article and Find Full Text PDF

A Comparison of the Optical Properties of Fibre-Based Luminescent Solar Concentrators and Transparent Wood Towards Sustainable Waveguides.

Luminescence

January 2025

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

Aiming at net-zero emissions, most international and national policies focus on sustainable development goals. Hence, there is an immediate need for replacing carbon-intensive materials with biomaterials. In this respect, this article presents a road-map for moving from polymeric to sustainable waveguides in optical devices.

View Article and Find Full Text PDF

Lead-Free Perovskite CsAgNaBiInCl Microcrystals for Scattering-Fluorescent Luminescent Solar Concentrators.

ACS Appl Mater Interfaces

January 2025

Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany.

In recent years, luminescent solar concentrators (LSCs) have gained a renaissance as a pivotal transparent photovoltaic (PV) for building-integrated photovoltaics (BIPVs). However, most of the studies focused on light-selective LSCs, and less attention was paid to the utilization of the full solar spectrum. In this study, a lead-free microcrystal CsAgNaBiInCl (CANBIC) perovskite phosphor is demonstrated to have bifunctional effects of luminescent down-shifting (LDS) and light scattering for the fabrication of LSCs, realizing light response from ultraviolet (UV) to NIR regions by an edge-mounted Si solar cell.

View Article and Find Full Text PDF

High-flux solar furnaces are valuable tools for applied research and development in solar energy. However, misalignment of concentrator facets can produce optical losses and lower the concentration ratio of these systems. This study proposes a practical method to align a faceted solar furnace.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!