A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The synergistic antileukemic effects of eltrombopag and decitabine in myeloid leukemia cells. | LitMetric

Background: Hypomethylating agents (HMAs), such as decitabine (DAC), are currently used as first-line therapy for patients with high-risk myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML) not eligible for standard chemotherapies. Exacerbation of thrombocytopenia is one of the prevalent complications after HMA treatment. Eltrombopag (EP), an oral thrombopoietin receptor agonist, can efficiently stimulate megakaryopoiesis and elevate platelet counts in MDS/AML patients. However, the significance of combining EP with HMAs in patients with high-risk MDS/AML has not been determined.

Purpose: To explore the impacts and mechanisms of EP and/or DAC on leukemia cell growth and to explore whether EP exhibits antileukemic effects in the context of DAC treatment in human myeloid leukemia cell lines.

Methods: In our study, we assessed the anti-leukemic effect of EP in the context of DAC treatment by measuring cell proliferation, apoptosis, cell-cycle distribution, and intracellular reactive oxygen species (ROS) levels.

Results: Our results showed that the combination of EP and DAC had a more obvious antiproliferative effect than that of DAC as a single agent. EP mainly induced S or G0/G1 phase cell cycle arrest, and DAC arrested the cell cycle in the S or G2/M phase. The combination of EP and DAC had a synergistic effect on cell cycle arrest. Furthermore, single-agent treatment with EP or DAC induced a change in intracellular ROS levels, and the combination of EP and DAC had a synergistic effect on ROS levels, exacerbating leukemia cell death.

Conclusion: Our study provides in vitro evidence of the synergistic antileukemic effect and potential mechanisms of the combination of DAC and EP on myeloid leukemia cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735651PMC
http://dx.doi.org/10.2147/CMAR.S213931DOI Listing

Publication Analysis

Top Keywords

combination dac
16
myeloid leukemia
12
leukemia cell
12
cell cycle
12
dac
11
synergistic antileukemic
8
antileukemic effects
8
leukemia cells
8
patients high-risk
8
context dac
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!