Background: Yttria-stabilized zirconia (YOZrO) nanoparticles are one of the important nanoparticles extensively used in manufacturing of plastics, textiles, catalyst, etc. Still, the cytotoxic and apoptotic effects of yttria-stabilized zirconia nanoparticles have not been well identified on human skin keratinocyte (HaCaT) cells. Therefore, in this study, we have designed to examine the cytotoxic potential of yttria-stabilized zirconia nanoparticles in HaCaT cells.
Methods: Prior to treatment, the yttria-stabilized zirconia nanoparticles were characterized by using different advanced instruments viz. dynamic light scattering (DLS), scanning electron microscope (SEM) and transmission electron microscope (TEM). Cell viability of HaCaT cells was measured by using MTS and NRU assays and viability of cells was reduced in a dose- and time-dependent manner.
Results: Reduction in the viability of cells was correlated with the rise of reactive oxygen species generation, increased caspase-3, mitochondria membrane potential and evidence of DNA strand breakage. These were consistent with the possibility that mitochondria damage can play a significant role in the cytotoxic response. Moreover, the activity of oxidative enzymes such as lipid peroxide (LPO) was increased and glutathione was reduced in HaCaT cells exposed with yttria-stabilized zirconia nanoparticles. It is also important to indicate that HaCaT cells appear to be more susceptible to yttria-stabilized zirconia nanoparticles exposure after 24 hrs.
Conclusion: This result provides a dose- and time-dependent apoptosis and genotoxicity of yttria-stabilized zirconia nanoparticles in HaCaT cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733180 | PMC |
http://dx.doi.org/10.2147/IJN.S212255 | DOI Listing |
J Int Soc Prev Community Dent
October 2024
Department of Basic Dental Science, College of Dentistry, University of Mosul, Mosul, Iraq.
Aim: To evaluate the micro-shear bond strength (µ-SBS) of resin-modified glass ionomer cement and to assess the chemical and topographical changes in the zirconia fitting surface induced by acidulated phosphate fluoride (APF) gel using scanning electron microscope (SEM) analysis and Fourier transform infrared (FTIR) spectroscopy.
Materials And Methods: Thirty-two samples were prepared from two zirconia materials, UPCERA HT White and BruxZir Solid Zirconia, milled by a computer-aided design/computer-aided manufacturing system. From each zirconia sample, six plates were prepared for FTIR and SEM testing.
Clin Oral Investig
December 2024
Department of Prosthetic Dentistry, Medical Faculty, Heidelberg University, Heidelberg, Germany.
Objectives: To prospectively evaluate the wear of posterior zirconia resin-bonded fixed partial dentures (RBFPDs) with polished occlusal surfaces and their natural enamel antagonists compared to contralateral controls in an enamel-enamel contact over 5 years.
Materials And Methods: In six patients with either an inlay- or wing-retained RBFPD made of monolithic 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP), wear was evaluated indirectly using baseline and annual polyvinyl siloxane impressions. Resulting gypsum models were digitized and aligned by unchanged surface areas.
Small
December 2024
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.
Replacing the oxygen evolution reaction with the alternative glycerol electro-oxidation reaction (GER) provides a promising strategy to enhance the efficiency of hydrogen production via water electrolysis while co-generating high-value chemicals. However, obtaining low-cost and efficient GER electrocatalysts remains a big challenge. Herein, a self-supported N-doped CoNiO nanoflakes (N-CoNiO NF) is proposed for efficient electrocatalytic oxidation of glycerol to formate.
View Article and Find Full Text PDFDent Mater
November 2024
Department of Prosthetic Dentistry, Dental School, Ludwig-Maximilians-Universität München, Munich, Germany.
Objective: To compare the fatigue behavior and reliability of 5 pressed lithium disilicate ceramics and a 5 mol% yttria-stabilized zirconia (5Y-TZP) when 3 dynamic loading protocols were used.
Methods: Bar-shaped specimens (30 × 4 × 3 mm) were fabricated from 5 pressed lithium disilicate ceramics (AMB, CEL, INI, IPS, and LIV) and a 5Y-TZP (ZR) (N = 324). Six specimens from each material were subjected to a static 4-point fracture load test, while the remaining specimens were subjected dynamic loading by increasing the starting load (30 % of the static fracture load) in every 5000 cycles by 50 N (loading protocol 1), in every 5000 cycles by 5 % (loading protocol 2) or in every 1000 cycles by 10 N (loading protocol 3) until fracture (n = 16).
J Prosthodont
November 2024
Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
Purpose: To evaluate the impact of varying concentrations of 3 mol% yttria-stabilized tetragonal zirconia polycrystalline ceramic (3Y-TZP) nanoparticles on mechanical properties of three-dimensional (3D)-printed resins in stereolithography (SLA) technology.
Materials And Methods: A total of four groups (n = 6) of specimens were printed. Pure 3D-printed resin was used as the control group (0 wt%).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!