An improved micropropagation protocol facilitating continuous multiplication of elite germplasm of has been developed. Initial culture of nodal explant in MS medium supplemented with 2.5 µM BA resulted in the formation of 12.5 shoots per explant with high frequency of leaf fall (84.3%). To confirm whether the leaf fall is due to accumulation of ethylene in the culture vessel, effect of ethylene releasing agent CEPA in the medium was tested. In order to reduce leaf fall and improve multiplication, varying concentration of anti-ethylene agent, AgNO was incorporated in the medium. Addition of 2.5 μM AgNO in combination with 2.5 μM BA produced maximum number of shoots (17.6) including shoots originated from the base of the explant and shoots from the axillary buds of the primary shoots, where significant reduction in leaf fall (20.6%) was noticed. This enabled sustained multiplication of through continuous subculture without adversely affecting shoot number or shoot quality in terms of shoot length. Microshoots obtained from fourth subculture onwards were used for ex vitro rooting and found that by treating 50 µM NAA for 30 s, maximum numbers of microshoots (83.3%) were rooted. Rooted plants were acclimatized, survived and were successfully transferred to field. Genetic fidelity analysis using 10 ISSR primers revealed more than 95% monomorphic bands among plants raised in MS medium containing low concentration (2.5 µM) of AgNO and BA (2.5 µM). The addition of AgNO in the medium sustained in vitro growth and effectively prevented leaf fall compared to control, thus demonstrating efficient micropropagation of
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745574 | PMC |
http://dx.doi.org/10.1007/s12298-019-00689-x | DOI Listing |
Ecology
January 2025
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
Temperate streams are subsidized by inputs of leaf litter peaking in fall. Yet, stream communities decompose dead leaves and integrate their energy into the aquatic food web throughout the whole year. Most studies investigating stream decomposition largely overlook long-term trajectories, which must be understood for an appropriate temporal upscaling of ecosystem processes.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
The invasion of the fall armyworm poses substantial threats to local agricultural safety, including the sugarcane industry. Exploring the insect-resistance mechanism is crucial for breeding resistant varieties. This study selected three representative materials from the genus─ L.
View Article and Find Full Text PDFJ Econ Entomol
January 2025
Department of Entomology and Plant Pathology, North Carolina State University, the Vernon G. James Research and Extension Center, Plymouth, NC, USA.
Transgenic corn (Zea mays L.) expressing insecticidal toxins from Bacillus thuringiensis (Bt) helps to control or suppress injury from a range of target insect pests. This study summarizes the yield benefits of Bt corn from field trials in Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2023.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Developing simple and efficient multi-gene expression systems is crucial for multi-trait improvement or bioproduction in transgenic plants. In previous research, an -based bicistronic system from the nonpathogenic fungus efficiently expressed multiple enzyme proteins in yeast and maize, and the heterologous enzymes successfully performed their catalytic activity to reconstruct the biosynthetic pathway in the host organism. Unlike enzyme proteins, some heterologous functional proteins (such as insecticidal proteins) are dose-dependent and they need to express sufficient levels to perform their biological functions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticultural Sciences, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Kerman, Iran.
Global warming and declining rainfall in recent years have led to increased water and soil salinity in Iran agricultural lands. To address these challenges, greenhouse cultivation, particularly soilless culture, emerges as a critical solution for mitigating the effect of soil salinity and water scarcity on vegetable plant production in Iran. The aim of this experiment was to compare the growth and physiological responses of cucumber plants cultivated in both soil and soilless systems, using three distinct nutrient solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!