Global climatic fluctuations and the increasing population have been responsible for the decline in the crop productivity. The chemical fertilizers, pesticides, and suitable genetic resources are commonly used for improving the crop yield. Magnetic field (MF) therapy for plants and animals has been found to be an effective and emerging tool to control diseases and increase tolerance against the adverse environment. Very limited studies have been attempted to determine the role of MF on plant tolerance against various stress conditions. This review aims to highlight the mitigating effect of MF on plants against abiotic and biotic stresses. MF interacts with seeds and plants and accelerates metabolism, which leads to an improved germination. The primary and secondary metabolites, enzyme activities, uptake of nutrient and water are reprogrammed to stimulate the plant growth and yield under favorable conditions. During adverse conditions of abiotic stress such as drought, salt, heavy metal contamination in soil, MF mitigates the stress effects by increasing antioxidants and reducing oxidative stress in plants. The stunted plant growth under different light and temperature conditions can be overcome by the exposure to MF. An MF treatment lowers the disease index of plants due to the modulation of calcium signaling, and proline and polyamines pathways. This review explores the basic and recent information about the impact of MF on plant survival against the adverse environment and emphasizes that thorough research is required to elucidate the mechanism of its interaction to protect the plants from biotic and abiotic stresses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6745571 | PMC |
http://dx.doi.org/10.1007/s12298-019-00699-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!