LLG2/3 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube Integrity.

Curr Biol

State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China. Electronic address:

Published: October 2019

AI Article Synopsis

  • In angiosperms, double fertilization is enabled by the transport of two sperm cells through a pollen tube, which communicates extensively with female tissues for successful fertilization.
  • A receptor complex on the pollen tube's surface, consisting of ANXUR1/2 and BUPS1/2, regulates the pollen tube's integrity by responding to specific peptides for signaling.
  • Two glycosylphosphatidylinositol-anchored proteins, LLG2 and LLG3, were identified as co-receptors in this signaling process, and their absence leads to early rupture of pollen tubes, indicating their crucial role in fertility.

Article Abstract

In angiosperms, two sperm cells are transported and delivered by the pollen tube to the ovule to achieve double fertilization. Extensive communication takes place between the pollen tube and the female tissues until the sperm cell cargo is ultimately released. During this process, a pollen tube surface-located receptor complex composed of ANXUR1/2 (ANX1/2) and Buddha's Paper Seal 1/2 (BUPS1/2) was reported to control the maintenance of pollen tube integrity by perceiving the autocrine peptide ligands rapid alkalinization factor 4 and 19 (RALF4/19). It was further hypothesized that pollen-tube rupture to release sperm is caused by the paracrine RALF34 peptide from the ovule interfering with this signaling pathway. In this study, we identified two Arabidopsis pollen-tube-expressed glycosylphosphatidylinositol-anchored proteins (GPI-APs), LORELEI-like-GPI-anchored protein 2 (LLG2) and LLG3, as co-receptors in the BUPS-ANX receptor complex. llg2 llg3 double mutants exhibit severe fertility defects. Mutant pollen tubes rupture early during the pollination process. Furthermore, LLG2 and LLG3 interact with ectodomains of both BUPSs and ANXURs, and this interaction is remarkably enhanced by the presence of RALF4/19 peptides. We further demonstrate that the N terminus (including a YISY motif) of the RALF4 peptide ligand interacts strongly with BUPS-ANX receptors but weakly with LLGs and is essential for its biological function, and its C-terminal region is sufficient for LLG binding. In conclusion, we propose that LLG2/3 serve as co-receptors during BUPS/ANX-RALF signaling and thereby further establish the importance of GPI-APs as key regulators in plant reproduction processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179479PMC
http://dx.doi.org/10.1016/j.cub.2019.08.032DOI Listing

Publication Analysis

Top Keywords

pollen tube
20
llg2 llg3
12
co-receptors bups/anx-ralf
8
bups/anx-ralf signaling
8
tube integrity
8
receptor complex
8
pollen
6
tube
5
llg2/3 co-receptors
4
signaling regulate
4

Similar Publications

Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.

View Article and Find Full Text PDF

Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.

View Article and Find Full Text PDF

Phosphatidic Acid Signaling in Modulating Plant Reproduction and Architecture.

Plant Commun

December 2024

Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:

Article Synopsis
  • Phosphatidic acid (PA) is a type of signaling lipid in plants that plays a crucial role in responding to environmental stresses and regulating key biological processes.
  • Research on mutants lacking PA's metabolizing enzymes and various analytical techniques has shown that PA is essential in various reproductive functions, including pollen tube development and seed formation.
  • The study will review these findings to better understand how PA influences plant reproduction and structure, while also suggesting areas for future research to further clarify its mechanisms of action.
View Article and Find Full Text PDF

Pollen development and germination play a crucial role in the sexual reproduction of plants. This study analysis of transcriptional dynamics of foxtail millet pollen with other tissues and organs (ovule, glume, seedling and root) through RNA-sequencing revealed that a total of 940 genes were up-regulated in foxtail millet pollen. Based on this, we analyzed the genes involved in pollen tube growth of receptor kinases and small peptides, calcium signaling, small G proteins, vesicle transport, cytoskeleton, cell wall correlation, and transcription factors that are up-regulated in pollen.

View Article and Find Full Text PDF

Systematic investigation and validation of peanut genetic transformation via the pollen tube injection method.

Plant Methods

December 2024

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China.

Genetic transformation is a pivotal approach in plant genetic engineering. Peanut (Arachis hypogaea L.) is an important oil and cash crop, but the stable genetic transformation of peanut is still difficult and inefficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!