A subset of Rab GTPases have been implicated in cilium formation in cultured mammalian cells [1-6]. Rab11 and Rab8, together with their GDP-GTP exchange factors (GEFs), TRAPP-II and Rabin8, promote recruitment of the ciliary vesicle to the mother centriole and its subsequent maturation, docking, and fusion with the cell surface [2-5]. Rab23 has been linked to cilium formation and membrane trafficking at mature cilia [1, 7, 8]; however, the identity of the GEF pathway activating Rab23, a member of the Rab7 subfamily of Rabs, remains unclear. Longin-domain-containing complexes have been shown to act as GEFs for Rab7 subfamily GTPases [9-12]. Here, we show that Inturned and Fuzzy, proteins previously implicated as planar cell polarity (PCP) effectors and in developmentally regulated cilium formation [13, 14], contain multiple longin domains characteristic of the Mon1-Ccz1 family of Rab7 GEFs and form a specific Rab23 GEF complex. In flies, loss of Rab23 function gave rise to defects in planar-polarized trichome formation consistent with this biochemical relationship. In cultured human and mouse cells, Inturned and Fuzzy localized to the basal body and proximal region of cilia, and cilium formation was compromised by depletion of either Inturned or Fuzzy. Cilium formation arrested after docking of the ciliary vesicle to the mother centriole but prior to axoneme elongation and fusion of the ciliary vesicle and plasma membrane. These findings extend the family of longin domain GEFs and define a molecular activity linking Rab23-regulated membrane traffic to cilia and planar cell polarity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864590PMC
http://dx.doi.org/10.1016/j.cub.2019.07.090DOI Listing

Publication Analysis

Top Keywords

cilium formation
20
inturned fuzzy
16
planar cell
12
cell polarity
12
ciliary vesicle
12
rab23 gef
8
gef complex
8
vesicle mother
8
mother centriole
8
rab7 subfamily
8

Similar Publications

The objective of this study was to investigate the prognostic significance of the frequency of primary cilia (PC) and β-catenin expression in 218 patients (pts) with non-small cell lung cancer (NSCLC), including 125 pts with adenocarcinoma and 93 pts with squamous cell carcinoma. In the whole group of 218 pts with NSCLC, overall survival (OS) was significantly inferior among pts with present PC than without PC (p=0.024) and with higher cytoplasmic β-catenin expression (25-75%) than with lower cytoplasmic β-catenin expression (<25%) (p=0.

View Article and Find Full Text PDF

TCTEX1D2 is essential for sperm flagellum formation in mice.

Sci Rep

January 2025

Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aoba, Aoba-Ku, Sendai, Miyagi, 980-8572, Japan.

Flagella and cilia are widely conserved motile structures, in mammalian, sperm possess flagella. Large protein complexes called dynein, including cytoplasmic dynein 2 and axonemal dynein, play a role in the formation of cilia and flagella. The function of each subunit component of dynein complexes in sperm flagellum formation remains unclear.

View Article and Find Full Text PDF

NME7 maintains primary cilium assembly, ciliary microtubule stability, and Hedgehog signaling.

Life Sci Alliance

April 2025

https://ror.org/0040axw97 Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China

NME7 (nucleoside diphosphate kinase 7), a lesser studied member of the non-metastatic expressed (NME) family, has been reported as a potential subunit of the γ-tubulin ring complex (γTuRC). However, its role in the cilium assembly and function remains unclear. Our research demonstrated that NME7 is located at the centrosome, including at the spindle poles during metaphase and at the basal bodies during cilium assembly.

View Article and Find Full Text PDF

Bi-allelic KICS2 mutations impair KICSTOR complex-mediated mTORC1 regulation, causing intellectual disability and epilepsy.

Am J Hum Genet

January 2025

Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Center for Rare Disease, University of Tübingen, Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE). Electronic address:

Nutrient-dependent mTORC1 regulation upon amino acid deprivation is mediated by the KICSTOR complex, comprising SZT2, KPTN, ITFG2, and KICS2, recruiting GATOR1 to lysosomes. Previously, pathogenic SZT2 and KPTN variants have been associated with autosomal recessive intellectual disability and epileptic encephalopathy. We identified bi-allelic KICS2 variants in eleven affected individuals presenting with intellectual disability and epilepsy.

View Article and Find Full Text PDF

The choroid plexus (ChP) is a vital brain structure that produces cerebrospinal fluid (CSF) and forms a selective barrier between the blood and CSF, essential for brain homeostasis. Composed of secretory epithelial cells, connective stroma, and a fenestrated vascular network, the ChP supports nutrient transport, immune surveillance, and the clearance of toxic by-products. Despite its significance in maintaining cerebral function, the mechanisms underlying its development and maturation remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!