AI Article Synopsis

  • Microorganisms, such as arbuscular mycorrhizal fungus and Cd-resistant bacteria, can help plants like tomato cope with heavy metal stress in contaminated soils.
  • The study found that using a combination of these microorganisms significantly improved tomato plant growth and Cd tolerance, especially when both types were used together.
  • Co-inoculation led to better nutrient uptake, reduced Cd levels in the plants, and beneficial changes in the soil, highlighting the importance of using beneficial microbes for healthier plant growth in metal-contaminated environments.

Article Abstract

Microorganisms are used to alleviate heavy metal stress in plants cultivated in contaminated fields. However, the relevant mechanisms have been rarely explored. The goal of this study was to investigate effects of arbuscular mycorrhizal fungus and two Cd-resistant bacterial strains ( sp. EG16 and DJ3) on growth and Cd tolerance of tomato when applied with different inoculation strategies (single or dual) and Cd concentrations (50 and 100 mg kg). Better plant growth was observed in mycorrhizal alone or combined treatments. In . and EG16 co-inoculation treatment, shoot and root dry weight were 119-154% and 91-173% higher than those of the control, respectively. Higher bacterial and mycorrhizal colonization rate and root Cd concentration were also found in this treatment. However, the decrease of shoot Cd concentration and translocation factor values indicated this treatment was effective in improving Cd tolerance of the host plants. In addition, the increase in soil pH and decline in bioavailable Cd in the rhizosphere might be partly involved in reduction of Cd accumulation in plants. Our results suggest that co-inoculation with suitable microorganisms is important in plant growth and tolerance to Cd in Cd-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2019.1671796DOI Listing

Publication Analysis

Top Keywords

tolerance tomato
8
growth tolerance
8
plant growth
8
effects cadmium-resistant
4
cadmium-resistant plant
4
plant growth-promoting
4
growth-promoting rhizobacteria
4
rhizobacteria cadmium
4
tolerance
4
cadmium tolerance
4

Similar Publications

Identification and Characterization of Endophytic Fungus DJE2023 Isolated from Banana ( sp. cv. Dajiao) with Potential for Biocontrol of Banana Fusarium Wilt.

J Fungi (Basel)

December 2024

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.

This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease.

View Article and Find Full Text PDF

Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.

View Article and Find Full Text PDF

Steryl esters (SE) are a storage pool of sterols that accumulates in cytoplasmic lipid droplets and helps to maintain plasma membrane sterol homeostasis throughout plant growth and development. Ester formation in plant SE is catalyzed by phospholipid:sterol acyltransferase (PSAT) and acyl-CoA:sterol acyltransferase (ASAT), which transfer long-chain fatty acid groups to free sterols from phospholipids and acyl-CoA, respectively. Comparative mass spectrometry-based metabolomic analysis between ripe fruits and seeds of a tomato (Solanum lycopersicum cv Micro-Tom) mutant lacking functional PSAT and ASAT enzymes (slasat1xslpsat1) shows that disruption of SE biosynthesis has a differential impact on the metabolome of these organs, including changes in the composition of free and glycosylated sterols.

View Article and Find Full Text PDF

RNA modifications in plant adaptation to abiotic stresses.

Plant Commun

December 2024

Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China,. Electronic address:

Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the plant stress adaptation process. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long-noncoding RNAs (lncRNAs). The genetic and molecular studies have identified the genes responsible for adding and removing chemical modifications on RNA molecules, known as "writers" and "erasers," respectively.

View Article and Find Full Text PDF

Alleviation of drought stress in tomato by foliar application of seafood waste extract.

Sci Rep

December 2024

Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia.

To manage the adverse effects of garbage pollution and avoid using chemicals, a natural extract of seafood shells was obtained and explored for its beneficial role. Physical characterization highlighted that its active compounds correspond to chitin and its derivative, chitosan. The ability of the extracted biostimulant to foster tomato tolerance was tested on drought-stressed plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!