Highly divergent cattle hepacivirus N in Southern Brazil.

Arch Virol

Laboratório de Virologia, Faculdade de Veterinária (FAVET), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.

Published: December 2019

The genus Hepacivirus includes 14 species (Hepacivirus A-N). In this study, we determined a partial genome sequence of a highly divergent bovine hepacivirus (hepacivirus N, HNV) isolate from cattle in Southern Brazil. Previously described HNV isolates have shared 80-99.7% nucleotide sequence identity in the NS3 coding region. However, the sequence determined in this study had 72.6% to 73.8% nucleotide sequence identity to known HNV NS3 sequences. This high divergence could be seen in a phylogenetic tree, suggesting that it represents a new genotype of HNV. These data expand our knowledge concerning the genetic variability and evolution of hepaciviruses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-019-04419-2DOI Listing

Publication Analysis

Top Keywords

highly divergent
8
southern brazil
8
nucleotide sequence
8
sequence identity
8
hepacivirus
5
divergent cattle
4
cattle hepacivirus
4
hepacivirus southern
4
brazil genus
4
genus hepacivirus
4

Similar Publications

Diverse microtubule-binding repeats regulate TPX2 activities at distinct locations within the spindle.

J Cell Biol

March 2025

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.

TPX2 is an elongated molecule containing multiple α-helical repeats. It stabilizes microtubules (MTs), promotes MT nucleation, and is essential for spindle assembly. However, the molecular basis of how TPX2 performs these functions remains elusive.

View Article and Find Full Text PDF

Aldolases are powerful C-C bond-forming enzymes for asymmetric organic synthesis because of their supreme stereoselectivity, diverse electrophiles and nucleophiles, and promising scalability. Stereodivergent engineering of aldolases to tune the selectivity for the synthesis of stereoisomers of chiral molecules is highly desirable but has rarely been reported. This study documented the semirational engineering of the decarboxylative aldolase UstD with the focused rational iterative site-specific mutagenesis (FRISM) strategy to perform a C-C bond-forming reaction with dione electrophiles.

View Article and Find Full Text PDF

Aquatic ecosystems are highly dynamic environments vulnerable to natural and anthropogenic disturbances. High-economic-value fisheries are one of many ecosystem services affected by these disturbances, and it is critical to accurately characterize the genetic diversity and effective population sizes of valuable fish stocks through time. We used genome-wide data to reconstruct the demographic histories of economically important yellow perch () populations.

View Article and Find Full Text PDF

Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.

View Article and Find Full Text PDF

CompàreGenome: a command-line tool for genomic diversity estimation in prokaryotes and eukaryotes.

BMC Bioinformatics

January 2025

Technology Park of Sardinia, Bioecopest Srl, SP 55 Km 8.400, Tramariglio, Alghero, SS, Italy.

Background: The increasing availability of sequenced genomes has enabled comparative analyses of various organisms. Numerous tools and online platforms have been developed for this purpose, facilitating the identification of unique features within selected organisms. However, choosing the most appropriate tools can be unclear during the initial stages of analysis, often requiring multiple attempts to match the specific characteristics of the data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!