A QTL for resistance to several races of black spot co-located with the known Rrd1 locus in Rosa. A polymorphism in muRdr1A linked to black spot resistance was identified and molecular markers were designed. Black spot, caused by Diplocarpon rosae, is one of the most serious foliar diseases of landscape roses that reduces the marketability and weakens the plants against winter survival. Genetic resistance to black spot (BS) exists and race-specific resistance is a good target to implement marker-assisted selection. High-density single nucleotide polymorphism-based genetic maps were created for the female parent of a tetraploid cross between 'CA60' and 'Singing in the Rain' using genotyping-by-sequencing following a two-way pseudo-testcross strategy. The female linkage map was generated based on 227 individuals and included 31 linkage groups, 1055 markers, with a length of 1980 cM. Race-specific resistance to four D. rosae races (5, 7, 10, 14) was evaluated using a detached leaf assay. BS resistance was also evaluated under natural infection in the field. Resistance to races 5, 10 and 14 of D. rosae and field resistance co-located on chromosome 1. A unique sequence of 32 bp in exon 4 of the muRdr1A gene was identified in 'CA60' that co-segregates with D. rosae resistance. Two diagnostic markers, a presence/absence marker and an INDEL marker, specific to this sequence were designed and validated in the mapping population and a backcross population derived from 'CA60.' Resistance to D. rosae race 7 mapped to a different location on chromosome 1.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-019-03443-9DOI Listing

Publication Analysis

Top Keywords

black spot
16
resistance
11
murdr1a gene
8
diplocarpon rosae
8
resistance races
8
race-specific resistance
8
resistance rosae
8
field resistance
8
rosae
6
identification polymorphism
4

Similar Publications

Vicia amoena is renowned for its high protein content and nutritional value, making it significant in animal production and traditional Chinese medicine production. In July 2023, typical anthracnose symptoms were observed on V. amoena leaves in Suihua City (125°82'E, 46°22'N), Heilongjiang Province, China, affecting approximately 40% of the plants (a total of 200 plants were surveyed).

View Article and Find Full Text PDF

Two new strains of Streptomyces with metabolic potential for biological control of pear black spot disease.

BMC Microbiol

December 2024

State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar, Xinjiang Uygur Autonomous Region, 843300, China.

Background: Pear black spot is caused by Alternaria tenuissima. It is one of the diseases of concern limiting pear production worldwide. Existing cultivation methods and fungicides are not sufficient to control early blight.

View Article and Find Full Text PDF

First Report of Leaf Spot Caused by on Invasive Weed in Korea.

Plant Dis

December 2024

Korea University, Environmental Science & Ecological Engineering, Seoul, Seoul, Korea (the Republic of), 02841;

Cerastium glomeratum Thuill., known as sticky mouse-ear chickweed, is native to Europe and has become naturalized in the wild on most continents. After its accidental introduction to Korea around the 1980s, it quickly became one of the dominant invasive weeds on the Korean peninsula and is now considered a significant threat to the Korean agroecosystem (Park et al.

View Article and Find Full Text PDF

Leaf spot of var. Caused by in Anhui Province, China.

Plant Dis

December 2024

Anqing Normal University, College of Life Sciences, JIXIAN road, anqing, Anhui, China, 246133;

var. Besser, a perennial herb of the Araceae family, was first reported in the Shen Nong's Herbal Classic and is widely distributed in southern China (Li 1979). It is important in traditional Chinese medicine for treating heart, stomach, and brain ailments (Lam et al.

View Article and Find Full Text PDF

First report of leaf brown spot caused by on in China.

Plant Dis

December 2024

South Shaoshan Road 498#Changsha, China, 410004;

Article Synopsis
  • Lithocarpus polystachyus, known as 'sweat tea,' is an important tree in China whose leaves are beneficial for diabetes treatment due to their high dihydrochalcone content.
  • In January 2024, a significant disease outbreak was reported on these trees in Hunan Province, affecting about 74% of surveyed plants, with symptoms evolving from small yellow lesions to large brown patches and ultimately leaf necrosis.
  • Pathogen isolation methods revealed that the fungus responsible for the disease was identified as Diaporthe sp., confirmed by examining colony characteristics and genomic DNA analysis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!