Improving feed efficiency (FE) of dairy cattle may boost farm profitability and reduce the environmental footprint of the dairy industry. Residual feed intake (RFI), a candidate FE trait in dairy cattle, can be defined to be genetically uncorrelated with major energy sink traits (e.g., milk production, body weight) by including genomic predicted transmitting ability of such traits in genetic analyses for RFI. We examined the genetic basis of RFI through genome-wide association (GWA) analyses and post-GWA enrichment analyses and identified candidate genes and biological pathways associated with RFI in dairy cattle. Data were collected from 4,823 lactations of 3,947 Holstein cows in 9 research herds in the United States. Of these cows, 3,555 were genotyped and were imputed to a high-density list of 312,614 SNP. We used a single-step GWA method to combine information from genotyped and nongenotyped animals with phenotypes as well as their ancestors' information. The estimated genomic breeding values from a single-step genomic BLUP were back-solved to obtain the individual SNP effects for RFI. The proportion of genetic variance explained by each 5-SNP sliding window was also calculated for RFI. Our GWA analyses suggested that RFI is a highly polygenic trait regulated by many genes with small effects. The closest genes to the top SNP and sliding windows were associated with dry matter intake (DMI), RFI, energy homeostasis and energy balance regulation, digestion and metabolism of carbohydrates and proteins, immune regulation, leptin signaling, mitochondrial ATP activities, rumen development, skeletal muscle development, and spermatogenesis. The region of 40.7 to 41.5 Mb on BTA25 (UMD3.1 reference genome) was the top associated region for RFI. The closest genes to this region, CARD11 and EIF3B, were previously shown to be related to RFI of dairy cattle and FE of broilers, respectively. Another candidate region, 57.7 to 58.2 Mb on BTA18, which is associated with DMI and leptin signaling, was also associated with RFI in this study. Post-GWA enrichment analyses used a sum-based marker-set test based on 4 public annotation databases: Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Reactome pathways, and medical subject heading (MeSH) terms. Results of these analyses were consistent with those from the top GWA signals. Across the 4 databases, GWA signals for RFI were highly enriched in the biosynthesis and metabolism of amino acids and proteins, digestion and metabolism of carbohydrates, skeletal development, mitochondrial electron transport, immunity, rumen bacteria activities, and sperm motility. Our findings offer novel insight into the genetic basis of RFI and identify candidate regions and biological pathways associated with RFI in dairy cattle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2019-16645 | DOI Listing |
Arch Anim Nutr
January 2025
Institute of Animal Science, University of Bonn, Bonn, Germany.
Protein supply to ruminants relies mainly on the flow of microbial crude protein (MCP) from the rumen, which is commonly assumed to primarily depend on energy supply. This study evaluated this assumption with recent data and tested if ruminally fermented organic matter (FOM) was a better predictor of MCP flow than total-tract digestible organic matter (DOM) and if more variables could improve the prediction of MCP flow. A previously published data set was extended by additional studies resulting in a data set of 139 studies including 407 treatment means, typical to Central European rations.
View Article and Find Full Text PDFJ Anim Sci
January 2025
University of Reading, School of Agriculture, Policy and Development, Earley gate, RG6 6EU Reading, United Kingdom.
This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (SB; n = 8), TMR with local brewers' spent grains (BSG; n = 8), TMR with local field beans (BNS; n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every four weeks, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
A facultative anaerobic, Gram-stain-negative, non-motile, rod-shaped bacterial strain AGMB14963 was isolated from the feces of a dairy cow. A 16S rRNA gene sequence-based phylogenetic analysis revealed that strain AGMB14963 belongs to the genus Gallibacterium, with Gallibacterium salpingitidis F150 being the closest species (95.8% 16S rRNA gene sequence similarity).
View Article and Find Full Text PDFEpidemiol Infect
January 2025
Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
are opportunistic pathogens which can cause mastitis in dairy cattle. mastitis often has a poor cure rate and can lead to the development of chronic infection, which has an impact on both health and production. However, there are few studies which aim to fully characterize by whole-genome sequencing from bovine mastitis cases.
View Article and Find Full Text PDFMicrobiome
January 2025
Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China.
Background: The rumen harbors a diverse virome that interacts with other microorganisms, playing pivotal roles in modulating metabolic processes within the rumen environment. However, the characterization of rumen viruses remains incomplete, and their association with production traits, such as feed efficiency (FE), has not been documented. In this study, rumen fluid from 30 Chinese Holstein dairy cows was analyzed using next-generation sequencing (NGS) and High-Fidelity (HiFi) sequencing to elucidate the rumen DNA virome profile and uncover potential viral mechanisms influencing FE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!