The development of tools to monitor water quality is mandatory in a scenario where clean water resources are decreasing. Here, the biosensing capability of an electroactive river sediment consortium was tested towards three model contaminants (glutaraldehyde, nickel(II) and chromium(III)). The proposed biosensor is a small membrane-less single chamber Microbial Fuel Cell (MFC), fabricated by 3D printing. Its semi-continuous mode of operation resulted in long-term current profile stability and reproducibility. A linear trend of response was obtained for glutaraldehyde in a concentration range of 5-1000 ppm. After the recovery of the electroactive consortium activity, the MFC-based biosensors were shown to be sensitive towards Ni(II) and Cr(III), at concentrations above 2 mg L. To effectively analyze biosensor response, a novel algorithm was proposed, offering advantages for the realization of energy-saving protocols for MFC-biosensor data transmission. Implementation of the device and method, from laboratory test to real environment, can offer a low cost in situ system for detection of water contaminants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbt.2019.09.005DOI Listing

Publication Analysis

Top Keywords

environmental electroactive
4
electroactive consortia
4
consortia reusable
4
reusable biosensing
4
biosensing element
4
element freshwater
4
freshwater toxicity
4
toxicity monitoring
4
monitoring development
4
development tools
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!